×

Evidence for multiple transmission routes for pseudorabies in wild hogs. (English) Zbl 1478.92204

Teboh-Ewungkem, Miranda I. (ed.) et al., Infectious diseases and our planet. Cham: Springer. Math. Planet Earth 7, 37-56 (2021).
Summary: Pseudorabies is a herpes viral infection that constantly threatens the commercial pig industry as it decreases birthrates and increases piglet mortality. While transmission routes in domestic pigs are known, disease dynamics in the reservoir of wild hog populations is not well understood. We formulate a model, which is discrete in space and time, for pseudorabies in a wild hog population in Great Smoky Mountains National Park and consider four potential transmission routes: density-dependent direct transmission, increased transmission during mating season, transmission from mothers to piglets during nursing, and carriers becoming reinfected due to stress. We estimate parameters from available data using all combinations of transmission routes and analyze results in order to provide evidence for various transmission routes that may exist in the population. Results provide evidence that all transmission routes may exist in the population with the strongest evidence for carriers becoming reinfected due to stress. The use of a spatial-temporal discrete model connected to data about the habitat and involving disease spread is a novel feature of this work.
For the entire collection see [Zbl 1470.92014].

MSC:

92D30 Epidemiology
Full Text: DOI

References:

[1] Levy, B., Collins, C., Lenhart, S., Madden, M., Corn, J., Salinas, R.A., Stiver, W.: A metapopulation model for feral hogs in Great Smoky Mountains National Park. Nat. Resour. Model. 29(1), 71-97 (2016) · Zbl 1542.92118 · doi:10.1111/nrm.12080
[2] Mengeling, W., Pirtle, E.: Susceptibility of feral swine to acute and latent infections with pseudorabies virus. In: Proceedings of the Feral Pig Symposium, Orlando, pp. 37-38 (1989)
[3] Magori-Cohen, R., Louzoun, Y., Herziger, Y., Oron, E., Arazi, A., Tuppurainen, E., Shpigel, N.Y., Klement, E.: Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus. Vet. Res. 43(1), 1 (2012) · doi:10.1186/1297-9716-43-1
[4] Jones, P.: A historical study of the European wild boar in North Carolina. Master of Arts in Education Thesis, Appalachian State Teachers College, Boone, North Carolina (1957)
[5] Hahn, E., Page, G., Hahn, P., Gillis, K., Romero, C., Annelli, J., Gibbs, E.: Mechanisms of transmission of Aujeszky’s disease virus originating from feral swine in the USA. Vet. Microbiol. 55(1-4):123-130 (1997) · doi:10.1016/S0378-1135(96)01309-0
[6] Allen, L.J., Brauer, F., Van den Driessche, P., Wu, J.: Mathematical Epidemiology, vol. 1945. Springer, Berlin (2008) · Zbl 1206.92022 · doi:10.1007/978-3-540-78911-6_3
[7] Bratton, S.P.: The effect of the European wild boar (Sus scrofa) on the high-elevation vernal flora in Great Smoky Mountains National Park. Bull. Torrey Botanical Club 101(4), 198-206 (1974) · doi:10.2307/2484644
[8] Cappaert, D., McCullough, D.G., Poland, T.M., Siegert, N.W.: Emerald ash borer in North America: a research and regulatory challenge. Am. Entomol. 51(3), 152-165, 51(3)
[9] Cavendish, T., Stiver, W., Delozier, E.K.: Disease surveillance of wild hogs in Great Smoky Mountains National Park—a focus on pseudorabies. In: National Conference on Feral Hogs, p. 7
[10] Center for Disease Control and Prevention (CDC): Leptospirosis (2010). https://www.cdc.gov/leptospirosis/index.html
[11] Edelstein-Keshet, L.: Mathematical Models in Biology. SIAM (2005) · Zbl 1100.92001
[12] Engeman, R.M., Smith, H.T., Severson, R., Severson, M.A., Woolard, J., Shwiff, S.A., Constantin, B., Griffin, D.: Damage reduction estimates and benefit-cost ratios for feral swine control from the last remnant of a basin marsh system in Florida. Environ. Conserv. 31(3), 207-211 (2004) · doi:10.1017/S0376892904001572
[13] Engeman, R.M., Smith, H.T., Shwiff, S.A., Constantin, B., Woolard, J., Nelson, M., Griffin, D.: Prevalence and economic value of feral swine damage to native habitat in three Florida state parks. Environ. Conserv. 30(4), 319-324 (2003) · doi:10.1017/S037689290300033X
[14] Howe, T.D. and Bratton, S.P.: Winter rooting activity of the European wild boar in the Great Smoky Mountains National Park. Castanea 41(3), 256-264 (1976)
[15] Lee, E.C., KellyJr, M.R., Ochocki, B.M., Akinwumi, S.M., Hamre, K.E., Tien, J.H., Eisenberg, M.C.: Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity. J. Theor. Biol. 420, 68-81 (2017) · Zbl 1370.92164 · doi:10.1016/j.jtbi.2017.01.032
[16] Leroy, E.M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J.-P., Muyembe-Tamfum, J.-J., Formenty, P.: Human ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis. 9(6):723-728 (2009) · doi:10.1089/vbz.2008.0167
[17] Madden, M., Welch, R., Jordan, T., Jackson, P., Seavey, R., Seavey, J.: Digital Vegetation Maps for the Great Smoky Mountains National Park. The University of Georgia, Department of Geography, Athens (2004)
[18] Miller, R.S., Farnsworth, M.L., Malmberg, J.L.: Diseases at the livestock-wildlife interface: status, challenges, and opportunities in the United States. Prev. Vet. Med. 110(2), 119-132 (2013) · doi:10.1016/j.prevetmed.2012.11.021
[19] National-Park-Service: Great Smoky Mountains National Park hard mast index from 1981-2010 (1981). Accessed 30 Aug 2011
[20] New Jr, J.C., Delozier, K., Barton, C.E., Morris, P.J., Potgieter, L.N.: A serologic survey of selected viral and bacterial diseases of European wild hogs, Great Smoky Mountains National Park, USA. J. Wildl. Dis. 30(1), 103-106 (1994) · doi:10.7589/0090-3558-30.1.103
[21] Romero, C.H., Meade, P., Santagata, J., Gillis, K., Lollis, G., Hahn, E.C., Gibbs, E.P.J.: Genital infection and transmission of pseudorabies virus in feral swine in Florida, USA. Vet. Microbiol. 55(1-4), 131-139 (1997) · doi:10.1016/S0378-1135(96)01307-7
[22] Scott, C., Pelton, M.: Seasonal food habits of the European wild hog in the Great Smoky Mountains National Park. Proc. Southeast. Assoc. Game Fish Commissioners 29, 585-593 (1975)
[23] Simberloff, D.: Conservation Biology for All, chapter 7. In: Invasive Species, pp. 131-152. Oxford University Press, Oxford (2010)
[24] Singer, F.J.: Wild pig populations in the national parks. Environ. Manag. 5(3), 263-270 (1981) · doi:10.1007/BF01873285
[25] Smith, G.: Preferential sexual transmission of pseudorabies virus in feral swine populations may not account for observed seroprevalence in the USA. Prev. Vet. Med. 103(2), 145-156 (2012) · doi:10.1016/j.prevetmed.2011.09.010
[26] Torremorell, M.: Viral causes of infertility and abortion in swine. In: Current Therapy in Large Animal Theriogenology, 2nd edn. Elsevier, Amsterdam (2006)
[27] Tozzini, F., Poli, A., Croce, G.D.: Experimental infection of European wild swine (Sus scrofa l.) with pseudorabies virus. J. Wildl. Dis. 18(4), 425-428 (1982)
[28] Allen, L.J.: Introduction to Mathematical Biology. Pearson/Prentice Hall (2007)
[29] Arino, J., Van den Driessche, P.: Disease spread in metapopulations. Fields Inst. Commun. 48(1), 1-13 (2006) · Zbl 1107.34042
[30] Atkinson, M.P., Wein, L.M.: Quantifying the routes of transmission for pandemic influenza. Bull. Math. Biol. 70(3), 820-867 (2008) · Zbl 1144.92322 · doi:10.1007/s11538-007-9281-2
[31] Bodine, E.N., Gross, L.J., Lenhart, S.: Order of events matter: Comparing discrete models for optimal control of species augmentation. J. Biol. Dyn. 6(sup2), 31-49 (2012) · Zbl 1448.92176
[32] Breban, R., Drake, J.M., Stallknecht, D.E., Rohani, P.: The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput. Biol. 5(4), e1000346 (2009) · doi:10.1371/journal.pcbi.1000346
[33] Center for Disease Control and Prevention (CDC): Toxoplasmosis (toxoplasma infection) (2018). https://www.cdc.gov/parasites/toxoplasmosis/index.html
[34] Engeman, R.M., Woolard, J., Smith, H.T., Bourassa, J., Constantin, B.U., Griffin, D.: An extraordinary patch of feral hog damage in Florida before and after initiating hog removal. Hum. Wildl. Conflicts 1(2), 271-275 (2007)
[35] Epanchin-Niell, R.S. and Hastings, A.: Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13(4), 528-541 (2010) · doi:10.1111/j.1461-0248.2010.01440.x
[36] Gerhold, R.W., Saraf, P., Chapman, A., Zou, X., Hickling, G., Stiver, W.H., Houston, A., Souza, M., Su, C.: Toxoplasma gondiiseroprevalence and genotype diversity in select wildlife species from the southeastern United States. Parasit. Vectors 10(1), 508 (2017) · doi:10.1186/s13071-017-2456-2
[37] Gibbon, J.W., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.D., Metts, B.S., Greene, J.L., Mills, T., Leiden, Y., Poppy, S., et al.: The global decline of reptiles, déjà vu amphibians: reptile species are declining on a global scale. six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioSci 50(8), 653-666 (2000)
[38] Müller, T., Hahn, E., Tottewitz, F., Kramer, M., Klupp, B., Mettenleiter, T., Freuling, C.: Pseudorabies virus in wild swine: a global perspective. Arch. Virol. 156(10), 1691-1705 (2011) · doi:10.1007/s00705-011-1080-2
[39] National-Park-Service: Great Smoky Mountains National Park feral hog harvest data from 1980-2013 (1980). Accessed 30 Aug 2011
[40] Olson, L.J., et al.: The economics of terrestrial invasive species: a review of the literature. Agric. Resour. Econ. Rev. 35(1), 178 (2006) · doi:10.1017/S1068280500010145
[41] Pirtle, E.C., Sacks, J.M., Nettles, V.F., Rollor, I.: Prevalence and transmission of pseudorabies virus in an isolated population of feral swine. J. Wildl. Dis. 25(4), 605-607 (1989) · doi:10.7589/0090-3558-25.4.605
[42] Pomeranz, L.E., Reynolds, A.E., Hengartner, C.J.: Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol. Mol. Biol. Rev. 69(3), 462-500 (2005) · doi:10.1128/MMBR.69.3.462-500.2005
[43] Sandfoss, M.R., DePerno, C.S., Betsill, C.W., Palamar, M.B., Erickson, G., Kennedy-Stoskopf, S.: A serosurvey for Brucella suis, classical swine fever virus, porcine circovirus type 2, and pseudorabies virus in feral swine (Sus scrofa) of eastern North Carolina. J. Wildl. Dis. 48(2), 462-466 (2012) · doi:10.7589/0090-3558-48.2.462
[44] Van Nes, A.: Epidemiology: Mathematical modelling of pseudorabies virus (syn. Aujeszky’s disease virus) outbreaks aids eradication programmes: a review. Vet. Q 23(1), 21-26 (2001)
[45] Witmer, G.W., Sanders, R.B., Taft, A.C.: Feral swine—are they a disease threat to livestock in the United States? USDA National Wildlife Research Center-Staff Publications, p. 292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.