×

Iterated integrals related to Feynman integrals associated to elliptic curves. (English) Zbl 1478.81015

Bluemlein, Johannes (ed.) et al., Anti-differentiation and the calculation of Feynman amplitudes. Selected papers based on the presentations at the conference, Zeuthen, Germany, October 2020. Cham: Springer. Texts Monogr. Symb. Comput., 519-545 (2021).
Summary: This talk reviews Feynman integrals, which are associated to elliptic curves. The talk will give an introduction into the mathematics behind them, covering the topics of elliptic curves, elliptic integrals, modular forms and the moduli space of \(n\) marked points on a genus one curve. The latter will be important, as elliptic Feynman integrals can be expressed as iterated integrals on the moduli space \({\mathcal M}_{1,n}\), in same way as Feynman integrals which evaluate to multiple polylogarithms can be expressed as iterated integrals on the moduli space \({\mathcal M}_{0,n}\). With the right language, many methods from the genus zero case carry over to the genus one case. In particular we will see in specific examples that the differential equation for elliptic Feynman integrals can be cast into an \(\epsilon \)-form. This allows to systematically obtain a solution order by order in the dimensional regularisation parameter.
For the entire collection see [Zbl 1475.81004].

MSC:

81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
14H52 Elliptic curves
11G05 Elliptic curves over global fields
81T18 Feynman diagrams
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11G55 Polylogarithms and relations with \(K\)-theory
33E05 Elliptic functions and integrals

References:

[1] E. D’Hoker, M.B. Green, Ö. Gürdogan, P. Vanhove, Commun. Num. Theor. Phys. 11, 165 (2017). arXiv:1512.06779 · Zbl 1426.11082
[2] P. Maierhöefer, J. Usovitsch, P. Uwer, Comput. Phys. Commun. 230, 99 (2018). arXiv:1705.05610 · Zbl 1498.81004
[3] T. Gehrmann, E. Remiddi, Nucl. Phys. B580, 485 (2000). hep-ph/9912329 · Zbl 1071.81089
[4] B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Nucl. Phys. B948, 114780 (2019). arXiv:1907.04638 · Zbl 1435.81240
[5] S. Hohenegger, S. Stieberger, Nucl. Phys. B925, 63 (2017). arXiv:1702.04963 · Zbl 1375.81202
[6] S. Laporta, E. Remiddi, Nucl. Phys. B704, 349 (2005). hep-ph/0406160 · Zbl 1119.81356
[7] R. Bonciani et al., J. High Energy Phys. 12, 096 (2016). arXiv:1609.06685
[8] A. von Manteuffel, L. Tancredi, J. High Energy Phys. 06, 127 (2017). arXiv:1701.05905
[9] L. Adams, E. Chaubey, S. Weinzierl, Phys. Rev. Lett. 118, 141602 (2017). arXiv:1702.04279.
[10] J. Ablinger et al., J. Math. Phys. 59, 062305 (2018). arXiv:1706.01299
[11] A. Primo, L. Tancredi, Nucl. Phys. B921, 316 (2017). arXiv:1704.05465
[12] G. Passarino, Eur. Phys. J. C 77, 77 (2017). arXiv:1610.06207
[13] E. Remiddi, L. Tancredi, Nucl. Phys. B925, 212 (2017). arXiv:1709.03622
[14] J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel, M. Wilhelm, Phys. Rev. Lett. 120, 121603 (2018). arXiv:1712.02785
[15] M. Hidding, F. Moriello, J. High Energy Phys. 01, 169 (2019). arXiv:1712.04441
[16] J. Broedel, C. Duhr, F. Dulat, L. Tancredi, J. High Energy Phys. 05, 093 (2018). arXiv:1712.07089
[17] J. Broedel, C. Duhr, F. Dulat, L. Tancredi, Phys. Rev. D97, 116009 (2018). arXiv:1712.07095
[18] J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, J. High Energy Phys. 08, 014 (2018). arXiv:1803.10256
[19] R.N. Lee, A.V. Smirnov, V.A. Smirnov, J. High Energy Phys. 03, 008 (2018). arXiv:1709.07525
[20] R.N. Lee, A.V. Smirnov, V.A. Smirnov, J. High Energy Phys. 07, 102 (2018). arXiv:1805.00227
[21] L. Adams, E. Chaubey, S. Weinzierl, Phys. Rev. Lett. 121, 142001 (2018). arXiv:1804.11144
[22] L. Adams, E. Chaubey, S. Weinzierl, J. High Energy Phys. 10, 206 (2018). arXiv:1806.04981
[23] L. Adams, Ph.D. thesis, University of Mainz, 2018
[24] J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, J. High Energy Phys. 01, 023 (2019). arXiv:1809.10698
[25] J.L. Bourjaily, A.J. McLeod, M. von Hippel, M. Wilhelm, J. High Energy Phys. 08, 184 (2018). arXiv:1805.10281
[26] M. Besier, D. Van Straten, S. Weinzierl, Commun. Num. Theor. Phys. 13, 253 (2019). arXiv:1809.10983
[27] P. Mastrolia, S. Mizera, J. High Energy Phys. 02, 139 (2019). arXiv:1810.03818.
[28] J. Ablinger, J. Blümlein, P. Marquard, N. Rana, C. Schneider, Nucl. Phys. B939, 253 (2019). arXiv:1810.12261
[29] H. Frellesvig et al., J. High Energy Phys. 05, 153 (2019). arXiv:1901.11510
[30] J. Broedel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, J. High Energy Phys. 05, 120 (2019). arXiv:1902.09971
[31] J. Blümlein, (2019). arXiv:1905.02148
[32] J. Broedel, A. Kaderli, J. Phys. A 53, 245201 (2020). arXiv:1906.11857
[33] C. Bogner, S. Müller-Stach, S. Weinzierl, Nucl. Phys. B 954, 114991 (2020). arXiv:1907.01251
[34] J. Broedel et al., J. High Energy Phys. 09, 112 (2019). arXiv:1907.03787
[35] S. Abreu, M. Becchetti, C. Duhr, R. Marzucca, J. High Energy Phys. 02, 050 (2020). arXiv:1912.02747
[36] C. Duhr, L. Tancredi, J. High Energy Phys. 02, 105 (2020). arXiv:1912.00077
[37] M. Leitner, (2019). arXiv:1908.11815
[38] M. Walden, S. Weinzierl, (2020). arXiv:2010.05271
[39] J. Campert, F. Moriello, A. Kotikov, (2020). arXiv:2011.01904
[40] M. Bezuglov, A. Onishchenko, O. Veretin, (2020). arXiv:2011.13337
[41] J. Broedel, C.R. Mafra, N. Matthes, O. Schlotterer, J. High Energy Phys. 07, 112 (2015). arXiv:1412.5535
[42] J. Broedel, N. Matthes, O. Schlotterer, J. Phys. A49, 155203 (2016). arXiv:1507.02254
[43] J. Broedel, N. Matthes, G. Richter, O. Schlotterer, J. Phys. A51, 285401 (2018). arXiv:1704.03449
[44] J. Broedel, O. Schlotterer, F. Zerbini, J. High Energy Phys. 01, 155 (2019). arXiv:1803.00527
[45] F. Brown, O. Schnetz, Duke Math. J. 161, 1817 (2012). arXiv:1006.4064
[46] J.L. Bourjaily, A.J. McLeod, M. von Hippel, M. Wilhelm, Phys. Rev. Lett. 122, 031601 (2019). arXiv:1810.07689
[47] J.L. Bourjaily et al., J. High Energy Phys. 01, 078 (2020). arXiv:1910.01534
[48] A. Klemm, C. Nega, R. Safari, J. High Energy Phys. 04, 088 (2020). arXiv:1912.06201
[49] K. Bönisch, F. Fischbach, A. Klemm, C. Nega, R. Safari, (2020). arXiv:2008.10574
[50] P. Du Val, Elliptic Functions, Elliptic Curves. London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 1973) · Zbl 0261.33001
[51] J. Silverman, The Arithmetic of Elliptic Curves(Springer, Berlin, 1986) · Zbl 0585.14026
[52] W.A. Stein, Modular Forms and a Computational Approach(American Mathematical Society, Providence, 2007) · Zbl 1110.11015
[53] T. Miyake, Modular Forms(Springer, Berlin, 1989) · Zbl 0701.11014
[54] F. Diamond, J. Shurman, A First Course in Modular Forms(Springer, Berlin, 2005) · Zbl 1062.11022
[55] K.-T. Chen, Bull. Am. Math. Soc. 83, 831 (1977) · Zbl 0389.58001
[56] D. Zagier, Invent. Math. 104, 449 (1991) · Zbl 0742.11029
[57] F. Brown, A. Levin, (2011). arXiv:1110.6917
[58] A. Levin, G. Racinet, (2007). arXiv:math/0703237
[59] F.V. Tkachov, Phys. Lett. B100, 65 (1981)
[60] K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B192, 159 (1981)
[61] A.V. Kotikov, Phys. Lett. B254, 158 (1991)
[62] A.V. Kotikov, Phys. Lett. B267, 123 (1991)
[63] M. Argeri, P. Mastrolia, Int. J. Mod. Phys. A22, 4375 (2007). arXiv:0707.4037
[64] S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun.Math.Phys. 326, 237 (2014). arXiv:1212.4389
[65] J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806
[66] J.M. Henn, J. Phys. A48, 153001 (2015). arXiv:1412.2296
[67] J. Ablinger et al., Comput. Phys. Commun. 202, 33 (2016). arXiv:1509.08324
[68] J. Bosma, K.J. Larsen, Y. Zhang, Phys. Rev. D97, 105014 (2018). arXiv:1712.03760
[69] S. Laporta, Int. J. Mod. Phys. A15, 5087 (2000). hep-ph/0102033
[70] A. von Manteuffel, C. Studerus, (2012). arXiv:1201.4330
[71] A.V. Smirnov, Comput. Phys. Commun. 189, 182 (2015). arXiv:1408.2372
[72] D.J. Broadhurst, J. Fleischer, O. Tarasov, Z. Phys. C60, 287 (1993). arXiv:hep-ph/9304303
[73] D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, J. Phys. A41, 205203 (2008). arXiv:0801.0891
[74] S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Num. Theor. Phys. 6, 203 (2012). arXiv:1112.4360
[75] L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54, 052303 (2013). arXiv:1302.7004
[76] S. Bloch, P. Vanhove, J. Numb. Theor. 148, 328 (2015). arXiv:1309.5865
[77] E. Remiddi, L. Tancredi, Nucl. Phys. B880, 343 (2014). arXiv:1311.3342
[78] L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 55, 102301 (2014). arXiv:1405.5640
[79] L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 56, 072303 (2015). arXiv:1504.03255
[80] L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57, 032304 (2016). arXiv:1512.05630
[81] S. Bloch, M. Kerr, P. Vanhove, Adv. Theor. Math. Phys. 21, 1373 (2017). arXiv:1601.08181
[82] L. Adams, S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018). arXiv:1704.08895
[83] C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B922, 528 (2017). arXiv:1705.08952
[84] L. Adams, S. Weinzierl, Phys. Lett. B781, 270 (2018). arXiv:1802.05020
[85] I. Hönemann, K. Tempest, S. Weinzierl, Phys. Rev. D98, 113008 (2018). arXiv:1811.09308
[86] S. Bloch, M. Kerr, P. Vanhove, Compos. Math. 151, 2329 (2015). arXiv:1406.2664
[87] M. Søgaard, Y. Zhang, Phys. Rev. D91, 081701 (2015). arXiv:1412.5577
[88] A. Primo, L. Tancredi, Nucl. Phys. B916, 94 (2017). arXiv:1610.08397
[89] E. Remiddi, L. Tancredi, Nucl. Phys. B907, 400 (2016). arXiv:1602.01481
[90] L. Adams, C. Bogner, A. Schweitzer, S. Weinzierl, J. Math. Phys. 57, 122302 (2016). arXiv:1607.01571
[91] O.V. Tarasov, Phys. Rev. D54, 6479 (1996). hep-th/9606018
[92] O.V. Tarasov, Nucl. Phys. B502, 455 (1997). hep
[93] E. Remiddi, Nuovo Cim. A110, 1435 (1997). hep-th/9711188
[94] S. Weinzierl, (2020). arXiv:2011.07311
[95] L. Tancredi, Nucl. Phys. B901, 282 (2015). arXiv:1509.03330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.