×

Topological features of multivariate distributions: dependency on the covariance matrix. (English) Zbl 1478.62388

Summary: Topological data analysis provides a new perspective on many problems in the domain of complex systems. Here, we establish the dependency of mean values of functional \(p\)-norms of ‘persistence landscapes’ on a uniform scaling of the underlying multivariate distribution. Furthermore, we demonstrate that average values of \(p\)-norms are decreasing, when the covariance in a system is increasing. To illustrate the complex dependency of these topological features on changes in the variance-covariance matrix, we conduct numerical experiments utilizing bi-variate distributions with known statistical properties. Our results help to explain the puzzling behavior of \(p\)-norms derived from daily log-returns of major equity indices on European and US markets at the inception phase of the global financial meltdown caused by the COVID-19 pandemic.

MSC:

62R40 Topological data analysis
55N31 Persistent homology and applications, topological data analysis
62H10 Multivariate distribution of statistics
62P05 Applications of statistics to actuarial sciences and financial mathematics

Software:

MASS (R); SW1PerS; TDA
Full Text: DOI

References:

[1] Inst. Math. Statist., Beachwood, OH
[2] Adler, R. J.; Bobrowski, O.; Weinberger, S., Crackle: the homology of noise, Discrete Comput Geom, 52, 4, 680-704 (2014) · Zbl 1350.60010
[3] Berwald, J.; Gidea, M., Critical transitions in a model of a genetic regulatory system, Math Biosci Eng, 11, 4, 723-740 (2014) · Zbl 1327.92029
[4] Berwald, J.; Gidea, M.; Vejdemo-Johansson, M., Automatic recognition and tagging of topologically different regimes in dynamical systems, Discontinuity Nonlinearity Complexity, 3, 4, 413-426 (2015) · Zbl 1316.70021
[5] Bobrowski, O.; Mukherjee, S., The topology of probability distributions on manifolds, Probab Theory Related Fields, 161, 3-4, 651-686 (2015) · Zbl 1316.60020
[6] Bonis, T.; Ovsjanikov, M.; Oudot, S.; Chazal, F., Persistence-based pooling for shape pose recognition, 6th International workshop on computational topology in image context (CTIC 2016), 19-29 (2016), Springer-Verlag Berlin: Springer-Verlag Berlin Heidelberg
[7] Bobrowski, O.; Kahle, M., Topology of random geometric complexes: a survey, J Appl and Comput Topol, 1, 331-364 (2018) · Zbl 1402.60015
[8] Bubenik, P., Statistical topological data analysis using persistence landscapes, J Mach Learn Res, 16, 1, 77-102 (2015) · Zbl 1337.68221
[9] Bubenik, P., The persistence landscape and some of its properties, (Baas, N.; Carlsson, G.; Quick, G.; Szymik, M.; Thaule, M., Topological data analysis: abel symposia, vol. 15 (2020), Springer: Springer Cham) · Zbl 1453.62807
[10] Carlsson, G.; Zomorodian, A., Computing persistent homology, Discrete Comput Geom, 33, 2, 249-274 (2005) · Zbl 1069.55003
[11] Carlsson, G., Topology and data, Bull Amer Math Soc, 46, 2, 255-308 (2009) · Zbl 1172.62002
[12] Chazal, F.; Fasy, B.; Lecci, F.; Rinaldo, A.; Wasserman, L., Stochastic convergence of persistence landscapes and silhouettes, J Comput Geom, 6, 2, 140 (2015) · Zbl 1395.62186
[13] Chazal, F.; de Silva, V.; Glisse, M.; Oudot, S., The structure and stability of persistence modules, Springer briefs in mathematics (2016), Springer International Publishing · Zbl 1362.55002
[14] Chazal, F.; Fasy, B.; Lecci, F.; Michel, B.; Rinaldo, A.; Wasserman, L., Robust topological inference: distance to a measure and kernel distance, J Mach Learn Res, 18, 159, 1-40 (2018) · Zbl 1435.62452
[15] Dłotko P., Qiu W., Rudkin S.. Cyclicality, periodicity and the topology of time series. 2019. arXiv:1905.12118 [math.AT].
[16] Donato, I.; Gori, M.; Pettini, M.; Petri, G.; De Nigris, S.; Franzosi, R.; Vaccarino, F., Persistent homology analysis of phase transitions, Phys Rev E, 93, 5, 052138 (2016)
[17] Edelsbrunner, H.; Harer, J., Computational topology: an introduction (2009), American Mathematical Society, Providence, RI
[18] Ghrist, R., Barcodes: the persistent topology of data, Bull Amer Math Soc, 45, 1, 61-75 (2008) · Zbl 1391.55005
[19] Gidea, M., Topology data analysis of critical transitions in financial networks, 3rd International winter school and conference on network science, 47-59 (2017), Springer Proceedings in Complexity. Springer: Springer Proceedings in Complexity. Springer Cham
[20] Gidea, M.; Katz, Y. A., Topological data analysis of financial time series: landscapes of crashes, Physica A, 491, 1, 820-834 (2018) · Zbl 1514.62206
[21] Gidea, M.; Goldsmith, D.; Katz, Y. A.; Roldan, P.; Shmalo, Y., Topological recognition of critical transitions in time series of cryptocurrencies, Physica A, 548, 1, 123843 (2020) · Zbl 07530523
[22] Green, S. B.; Mintz, A.; Xu, X.; Cisewski-Kehe, J., Topology of our cosmology with persistent homology, Astron Comput, 27, 1, 34-52 (2019)
[23] Harer, J.; Perea, J. A., Sliding windows and persistence: an application of topological methods to signal analysis, J Found Comput Math, 15, 3, 799-838 (2015) · Zbl 1325.37054
[24] Katz, Y. A.; Biem, A., Time-resolved topological data analysis of market instabilities, Physica A, 571, 125816 (2021)
[25] Khasawneh, F. A.; Munch, E., Chatter detection in turning using persistent homology, Mech Syst Signal Process, 70-71, 1, 527-541 (2016)
[26] Khasawneh, F. A.; Munch, E., Topological data analysis for true step detection in periodic piecewise constant signals, Proc R Soc A, 474, 2218, 20180027 (2018) · Zbl 1407.62445
[27] Kovacev-Nikolic, V.; Bubenik, P.; Nikolic, D.; Heo, G., Using persistent homology and dynamical distances to analyze protein binding, Stat Appl Genet Mol Biol, 15, 1, 19-38 (2016) · Zbl 1343.92380
[28] Kramár, M.; Levanger, R.; Tithof, J.; Suri, B.; Xu, M.; Paul, M.; Schatz, M. F.; Mischaikow, K., Analysis of Kolmogorov flow and Rayleigh-Benard convection using persistent homology, Physica D, 334, 1, 82-98 (2016) · Zbl 1415.76582
[29] Maletić, S.; Zhao, Y.; Rajković, M., Persistent topological features of dynamical systems, Chaos, 26, 5, 53105 (2016) · Zbl 1361.37068
[30] Perea, J. A.; Deckard, A.; Haase, . S.B.; Harer, J., SW1PerS: sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data, BMC Bioinf, 16, 1, 257 (2015)
[31] Ravishanker N., Chen R.. Topological data analysis (TDA) for time series. 2019. arXiv:1909.10604 [stat.AP].
[32] Latest software available at https://CRAN.R-project.org/package=MASS · Zbl 1006.62003
[33] Scheffer, M., Critical transitions in nature and society, Princeton studies in complexity (2009), Princeton University Press: Princeton University Press Princeton, NJ
[34] Scheffer, M.; Bascompte, J.; William, A. B.; Brovkin, V.; Carpenter, S. R.; Dakos, V.; Held, H.; van Nes, E. H.; Rietkerk, M.; Sugihara, G., Early-warning signals for critical transitions, Nature, 461, 7260, 53-59 (2009)
[35] Seversky, L. M.; Davis, S.; Berger, M., On time-series topological data analysis: new data and opportunities, 2016 IEEE conference on computer vision and pattern recognition workshops (CVPRW), 1014-1022 (2016)
[36] Tong, Y. L., The multivariate normal distribution, Springer series in statistics (1990), Springer-Verlag New York: Springer-Verlag New York NY · Zbl 0689.62036
[37] Vejdemo-Johansson, M.; Singh, G.; Alagappan, M.; Carlsson, J.; Carlsson, G., Extracting insights from the shape of complex data using topology, Sci Rep, 3, 1, 1236 (2013)
[38] Fasy B.T., Kim J., Lecci F., Maria C., Millman D.L., Rouvreau V.. Statistical tools for topological data analysis. 2015. Software available at https://CRAN.R-project.org/package=TDA.
[39] Vejdemo-Johansson M., Mukherjee S.. Multiple testing with persistent homology. 2018. arXiv:1812.06491 [cs.CG].
[40] Wang, Y.; Ombao, H.; Chung, M. K., Topological epilepsy seizure detection in electroencephalographic signals, Proceedings IEEE international symposium on biomedical imaging, 351-354 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.