×

On simultaneous limits for aggregation of stationary randomized INAR(1) processes with Poisson innovations. (English) Zbl 1478.60085

Summary: We investigate joint temporal and contemporaneous aggregation of \(N\) independent copies of strictly stationary INteger-valued AutoRegressive processes of order 1 (INAR(1)) with random coefficient \(\alpha\in (0, 1)\) and with idiosyncratic Poisson innovations. Assuming that \(\alpha\) has a density function of the form \(\psi(x)(1-x)^\beta\), \(x\in (0,1)\), with \(\beta\in (-1,\infty)\) and \(\lim\limits_{x\uparrow 1}\psi(x)=\psi_1\in (0, \infty)\), different limits of appropriately centered and scaled aggregated partial sums are shown to exist for \(\beta\in (-1, 0]\) in the so-called simultaneous case, i.e., when both \(N\) and the time scale \(n\) increase to infinity at a given rate. The case \(\beta\in (0,\infty)\) remains open. We also give a new explicit formula for the joint characteristic functions of finite dimensional distributions of the appropriately centered aggregated process in question.

MSC:

60F05 Central limit and other weak theorems
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60E10 Characteristic functions; other transforms
60G52 Stable stochastic processes
60G15 Gaussian processes

References:

[1] Al-Osh, M. A.—Alzaid, A. A.: First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal. 8(3) (1987), 261-275. · Zbl 0617.62096
[2] Barczy, M.—Basrak, B.—Kevei, P.—Pap, G.—Planinić, H.: Statistical inference of subcritical strongly stationary Galton-Watson processes with regularly varying immigration, Stochastic Process. Appl. 132 (2021), 33-75. · Zbl 1475.60162
[3] Barczy, M.—Nedényi, F.—Pap, G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations, https://arxiv.org/abs/1509.05149; this is an extended version of [4]. · Zbl 1361.62051
[4] Barczy, M.—Nedényi, F.—Pap., G.: Iterated scaling limits for aggregation of randomized INAR(1) processes with idiosyncratic Poisson innovations, J. Math. Anal. Appl. 451(1) (2017), 524-543. · Zbl 1361.62051
[5] Barczy, M.—Nedényi, F. K.—Pap, G.: On simultaneous limits for aggregation of stationary randomized INAR(1) processes with Poisson innovations, https://arxiv.org/abs/2001.07127. · Zbl 1361.62051
[6] Dombry, C.—Kaj, I.: The on-off network traffic model under intermediate scaling, Queueing Syst. 69(1) (2011), 29-44. · Zbl 1235.60121
[7] Granger, C. W. J.: Long memory relationships and the aggregation of dynamic models, J. Econometrics 14(2) (1980), 227-238. · Zbl 0466.62108
[8] Jirak, M.: Limit theorems for aggregated linear processes, Adv. Appl. Probab. 45(2) (2013), 520-544. · Zbl 1277.60060
[9] Leipus, R.—Philippe, A.—Pilipauskaitė, V.—Surgailis, D.: Sample covariances of random-coefficient AR(1) panel model, Electron. J. Stat. 13(2) (2019), 4527-4572. · Zbl 1440.62336
[10] Li, Z.: Measure-Valued Branching Markov Processes, Probab. Appl. (N. Y.), Springer, Heidelberg, 2011. · Zbl 1235.60003
[11] McKenzie, E.: Some simple models for discrete variate time series, JAWRA Journal of the American Water Resources Association 21(4) (1985), 645-650.
[12] Mikosch, T.—Resnick, S.—Rootzén, H.—Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab. 12(1) (2002), 23-68. · Zbl 1021.60076
[13] Nedényi, F.—Pap, G.: Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes, Statist. Probab. Lett. 118 (2016), 16-23. · Zbl 1347.60014
[14] Pilipauskaitė, V.—Skorniakov, V.—Surgailis, D.: Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes with infinite variance, Adv. in Appl. Probab. 52(1) (2020), 237-265. · Zbl 1446.62248
[15] Pilipauskaitė, V.—Surgailis, D.: Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes, Stochastic Process. Appl. 124(2) (2014), 1011-1035. · Zbl 1400.62194
[16] Puplinskaitė, D.—Surgailis, D.: Aggregation of random-coefficient AR(1) process with infinite variance and common innovations, Lith. Math. J. 49(4) (2009), 446-463. · Zbl 1194.60026
[17] Puplinskaitė, D.—Surgailis, D.: Aggregation of a random-coefficient AR(1) process with infinite variance and idiosyncratic innovations, Adv. in Appl. Probab. 42(2) (2010), 509-527. · Zbl 1191.62154
[18] Robinson, P. M.: Statistical inference for a random coefficient autoregressive model, Scand. J. Statist. 5(3) (1978), 163-168.
[19] Steutel, F. W.—van Harn, K.: Discrete analogues of self-decomposability and stability, Ann. Probab. 7(5) (1979), 893-899. · Zbl 0418.60020
[20] Stroock, D. W.: Probability Theory. An Analytic View, 2nd ed., Cambridge University Press, Cambridge, 2011. · Zbl 1223.60001
[21] Taqqu, M. S.—Willinger, W.—Sherman, R.: Proof of a fundamental result in self-similar traffic modeling, ACM SIGCOMM Computer Communication Review 27(2) (1997), 5-23.
[22] Theil, H.: Linear Aggregation of Economic Relations. Contributions to Economic Analysis, VII, Amsterdam, North-Holland Publishing Company, 1954. · Zbl 0057.36109
[23] Turkman, K. F.—Scotto, M. G.—de Zea Bermudez, P.: Non-linear Time Series. Extreme Events and Integer Value Problems, Springer, Cham, 2014. · Zbl 1341.62029
[24] Weiß, Ch. H.: Thinning operations for modeling time series of counts – a survey, AStA Adv. Stat. Anal. 92(3) (2008), 319-341. · Zbl 1477.62256
[25] Zellner, A.: On the Aggregation Problem: A New Approach to a Troublesome Problem, In: Economic Models, Estimation and Risk Programming: Essays in honor of Gerhard Tintner, edited by Fox, K. A., Sengupta, J. K. and Narasimham, G. V. L., Lecture Notes in Operations Research and Mathematical Economics, 15, Springer-Verlag, Berlin-New York, 1969. · Zbl 0191.47904
[26] Zolotarev, V. M.: One-dimensional Stable Distributions, American Mathematical Society, Providence, RI, 1986. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.