×

A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra. (English) Zbl 1478.57021

The main objective of this paper is to use a specific Hopf superalgebra in order to get first a universal invariant of links and then a Hennings-type topological invariant of pairs \((M, \omega)\), where \(M\) is a 3-manifold and \(\omega\) is a cohomology class in \(H^1(M,G)\) (with \(G = ( \mathbb{C}/\mathbb{Z} \times \mathbb{C}/\mathbb{Z}, +)\).) The Hopf superalgebra in question is \(\mathcal{U}^H = \mathcal{U}^H_\xi \mathfrak{sl}(2|1)/(e_1^l,f_1^l)\), as defined and reviewed in Section 2.2.1.
In order to obtain the link invariant and then the invariant of manifolds, one first needs to construct a completion of \(\mathcal{U}^H\), the topological ribbon Hopf superalgebra \(\widehat{\mathcal{U}^H}\), whose topology is determined by the norm of uniform convergence on compact sets. This is done first in Section 2.2.2, where a series of propositions imply the compatibility between the Hopf and the topological structures, and then in Section 2.2.3., where an added element \(\theta\) is shown to be the twist required for the ribbon structure. Further on, in Section 2.3, the bosonization of \(\widehat{\mathcal{U}^H}\), denoted by \(\widehat{\mathcal{U}^{H_\sigma}}\) is obtained. This is a ribbon Hopf algebra, from which will come the wanted invariants.
For the constructed ribbon Hopf algebra, a well-known method is used in order to obtain the universal invariant of oriented framed links. This appears in Section 3, where the invariant is constructed (Section 3.2), with Theorem 3.2 explaining that the expression obtained is indeed a (topological) invariant of framed links.
In Section 4, the invariant of framed links is used to obtain an invariant of manifolds \(M\) with added \(\omega \in H^1(M,G)\). The method used is adapted from Hennings’s construction. Hennings uses a right integral for a given Hopf algebra, which is known to exist if the Hopf algebra is finite dimensional. Virelizier generalized this notion to finite type unimodular ribbon Hopf \(\pi\)-algebras with a right \(\pi\)-integral (\(\pi\) a group). None of these can be used directly for \(\mathcal{U}^H\), whose associated \(G\)-coalgebra is not of finite type. However, it induces a finite-type Hopf \(G\)-coalgebra by forgetting two elements, and from this the manifold invariant can be obtained. It appears in Section 4.3, in Theorem 4.15, and its construction needs a discrete Fourier transform, whose properties are explored in Section 4.2.

MSC:

57K31 Invariants of 3-manifolds (including skein modules, character varieties)
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

References:

[1] A. Beliakova, C. Blanchet, and N. Geer, Logarithmic Hennings invariants for restricted quantumsl.2/.Algebr. Geom. Topol.18(2018), no. 7, 4329-4358. MR 3892247 Zbl 1411.57020 · Zbl 1411.57020
[2] F. Costantino, N. Geer, and B. Patureau-Mirand, Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories.J. Topol.7(2014), no. 4, 1005-1053.MR 3286896 Zbl 1320.57016 · Zbl 1320.57016
[3] F. Costantino, N. Geer, and B. Patureau-Mirand, Some remarks on the unrolled quantum group ofsl.2/.J. Pure Appl. Algebra219(2015), no. 8, 3238-3262.MR 3320217 Zbl 1355.17010 · Zbl 1355.17010
[4] N. Geer, J. Kujawa, and B. Patureau-Mirand, Ambidextrous objects and trace functions for nonsemisimple categories.Proc. Amer. Math. Soc.141(2013), no. 9, 2963-2978.MR 3068949 Zbl 1280.18005 · Zbl 1280.18005
[5] N. Geer and B. Patureau-Mirand, An invariant supertrace for the category of representations of Lie superalgebras.Pacific J. Math.238(2008), no. 2, 331-348. MR 2442996 Zbl 1210.17010 · Zbl 1210.17010
[6] N. Geer and B. Patureau-Mirand, Topological invariants from unrestricted quantum groups.Algebr. Geom. Topol.13(2013), no. 6, 3305-3363.MR 3248736 Zbl 1273.17018 · Zbl 1273.17018
[7] N. Geer, B. Patureau-Mirand, and V. Turaev, Modified quantum dimensions and renormalized link invariants.Compos. Math.145(2009), no. 1, 196-212.MR 2480500 Zbl 1160.81022 · Zbl 1160.81022
[8] A. Grothendieck, Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires.Ann. Inst. Fourier (Grenoble)4(1952), 73-112.MR 0061754 Zbl 0055.09705 · Zbl 0055.09705
[9] N. P. Ha, Modified trace from pivotal HopfG-coalgebras.J. Pure Appl. Algebra224 (2020), no. 5, 106225.MR 4046231 Zbl 07173656 · Zbl 1453.16034
[10] N. P. Ha, Topological invariants from quantum groupUsl.2j1/at roots of unity.Abh. Math. Semin. Univ. Hambg.88(2018), no. 1, 163-188.MR 3785790 Zbl 1398.57022 · Zbl 1398.57022
[11] N. P. Ha,Topological quantum field theory for Lie superalgebrasl.2j1/.Thèse de doctorat. Université de Bretagne Sud, Lorient, 2018.
[12] K. Habiro, Bottom tangles and universal invariants.Algebr. Geom. Topol.6(2006), 1113-1214.MR 2253443 Zbl 1130.57014 · Zbl 1130.57014
[13] K. Habiro and T. T Q. Lê, Unified quantum invariants for integral homology spheres associated with simple Lie algebras.Geom. Topol.20(2016), no. 5, 2687-2835. MR 3556349 Zbl 1362.57019 · Zbl 1362.57019
[14] M. Hennings, Invariants of links and3-manifolds obtained from Hopf algebras. J. London Math. Soc.(2)54(1996), no. 3, 594-624.MR 1413901 Zbl 0882.57002 · Zbl 0882.57002
[15] C. Kassel,Quantum groups.Graduate Texts in Mathematics, 155. Springer-Verlag, New York, 1995.MR 1321145 Zbl 0808.17003 · Zbl 0808.17003
[16] L. Kauffman and D. E. Radford, Oriented quantum algebras, categories and invariants of knots and links.J. Knot Theory Ramifications10(2001), no. 7, 1047-1084. MR 1867109 Zbl 1008.57010 · Zbl 1008.57010
[17] S. M. Khoroshkin and V. N. Tolstoy, UniversalR-matrix for quantized (super)algebras.Comm. Math. Phys.141(1991), no. 3, 599-617.MR 1134942 Zbl 0744.17015 · Zbl 0744.17015
[18] R. Kirby, A calculus for framed links.Invent. Math. 45(1978), no. 1, 35-56. MR 0467753 Zbl 0377.55001 · Zbl 0377.55001
[19] S. Majid, Cross products by braided groups and bosonization.J. Algebra163(1994), no. 1, 165-190.MR 1257312 Zbl 0807.16036 · Zbl 0807.16036
[20] T. Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links. J. Knot Theory Ramifications2(1993), no. 2, 211-232.MR 1227011 Zbl 0798.57006 · Zbl 0798.57006
[21] T. Ohtsuki,Quantum invariants. A study of knots, 3-manifolds, and their sets. Series on Knots and Everything, 29. World Scientific Publishing Co., River Edge, N.J., 2002. MR 1881401 Zbl 0991.57001 · Zbl 0991.57001
[22] B. Patureau-Mirand,Invariants topologiques quantiques non semi-simples. Habilitation à diriger des recherches, Université de Bretagne Sud, Lorient, 2012.
[23] M. J. Pflauma and M. Schottenloher, Holomorphic deformation of Hopf algebras and applications to quantum groups.J. Geom. Phys.28 (1998), no. 1-2, 31-44. MR 1653122 · Zbl 1011.17014
[24] F. Trèves,Topological vector spaces, distributions and kernels.Academic Press, New York and London, 1967.MR 0225131 Zbl 0171.10402 · Zbl 0171.10402
[25] A. Virelizier,Algèbres de Hopf graduées et fibrés plats sur les 3-variétés. Thèse de doctorat, Université Louis Pasteur, Strasbourg, 2001.
[26] A. Virelizier, Hopf group-coalgebras.J. Pure Appl. Algebra171(2002), no. 1, 75-122.MR 1903398 Zbl 1011.16023 · Zbl 1011.16023
[27] H. Yamane, Quantized enveloping algebras associated with simple Lie superalgebras and their universalR-matrices.Publ. Res. Inst. Math. Sci.30(1994), no. 1, 15-87 · Zbl 0821.17005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.