×

Dimensional analysis of \(\alpha\)-fractal functions. (English) Zbl 1478.28009

Summary: We provide a rigorous study on dimensions of fractal interpolation functions defined on a closed and bounded interval of \(\mathbb{R}\) which are associated to a continuous function with respect to a base function, scaling functions and a partition of the interval. In particular, we calculate an exact estimation of box dimension of \(\alpha\)-fractal functions under suitable hypotheses on the iterated function system.

MSC:

28A80 Fractals
26A18 Iteration of real functions in one variable
35B41 Attractors

References:

[1] Akhtar, Md.N., Prasad, M.G.P., Navascués, M.A.: Box dimensions of \(\alpha \)-fractal functions. Fractals 24(3), 1650037 (2016) · Zbl 1354.28002
[2] Bandt, C., Graf, S.: Self-similar sets. VII. A characterization of self-similar fractals with positive Hausdorff measure. Proc. Amer. Math. Soc. 114(4), 995-1001 (1992) · Zbl 0823.28003
[3] Barnsley, MF, Fractal functions and interpolation, Constr. Approx., 2, 4, 303-329 (1986) · Zbl 0606.41005 · doi:10.1007/BF01893434
[4] Barnsley, MF, Fractals Everywhere (1988), Boston, MA: Academic Press, Boston, MA · Zbl 0691.58001
[5] Barnsley, MF; Elton, J.; Hardin, D.; Massopust, P., Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 20, 5, 1218-1242 (1989) · Zbl 0704.26009 · doi:10.1137/0520080
[6] Barnsley, MF; Massopust, PR, Bilinear fractal interpolation and box dimension, J. Approx. Theory, 192, 362-378 (2015) · Zbl 1315.28003 · doi:10.1016/j.jat.2014.10.014
[7] Carvalho, A., Box dimension, oscillation and smoothness in function spaces, J. Funct. Spaces Appl., 3, 3, 287-320 (2005) · Zbl 1092.46022 · doi:10.1155/2005/405979
[8] Chand, AKB; Jha, S.; Navascués, MA, Kantorovich-Bernstein \(\alpha \)-fractal functions in \(\cal{L}^p\) spaces, Quaest. Math., 43, 2, 227-241 (2020) · Zbl 1436.28006 · doi:10.2989/16073606.2019.1572664
[9] Deliu, A.; Jawerth, B., Geometrical dimension versus smoothness, Constr. Approx., 8, 2, 211-222 (1992) · Zbl 0782.46031 · doi:10.1007/BF01238270
[10] Falconer, K., Fractal Geometry. Mathematical Foundations and Applications (2003), Hoboken: Wiley, Hoboken · Zbl 1060.28005 · doi:10.1002/0470013850
[11] Falconer, KJ, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106, 2, 543-554 (1989) · Zbl 0683.58034 · doi:10.1090/S0002-9939-1989-0969315-8
[12] Fan, AH; Lau, KS, Iterated function system and Ruelle operator, J. Math. Anal. Appl., 231, 2, 319-344 (1999) · Zbl 1029.37014 · doi:10.1006/jmaa.1998.6210
[13] Gordon, RA, Real Analysis: A First Course (2001), London: Addison Wesley, London · Zbl 0956.26501
[14] Hardin, DP; Massopust, PR, The capacity for a class of fractal functions, Comm. Math. Phys., 105, 3, 455-460 (1986) · Zbl 0605.28006 · doi:10.1007/BF01205937
[15] Hardin, DP; Massopust, PR, Fractal interpolation functions from \({{ R}}^n\) into \({{ R}}^m\) and their projections, Z. Anal. Anwendungen, 12, 3, 535-548 (1993) · Zbl 0777.41022 · doi:10.4171/ZAA/549
[16] Lau, K.S., Rao, H., Ye, Y.L.: Corrigendum: “Iterated function system and Ruelle operator” [J. Math. Anal. Appl. 231 (1999), no. 2, 319-344; MR1669203 (2001a:37013)] by Lau and A. H. Fan. J. Math. Anal. Appl. 262(1), 446-451 (2001)
[17] Liang, YS, Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation, Nonlinear Anal., 72, 11, 4304-4306 (2010) · Zbl 1190.28001 · doi:10.1016/j.na.2010.02.007
[18] Massopust, PR, Fractal Functions, Fractal Surfaces, and Wavelets (1994), San Diego, CA: Academic Press, San Diego, CA · Zbl 0817.28004
[19] Massopust, PR, Interpolation and Approximation with Splines and Fractals (2010), Oxford: Oxford University Press, Oxford · Zbl 1190.65020
[20] Navascués, MA, Fractal polynomial interpolation, Z. Anal. Anwendungen, 24, 2, 401-418 (2005) · Zbl 1082.28006 · doi:10.4171/ZAA/1248
[21] Navascués, MA, Fractal approximation, Complex Anal. Oper. Theory, 4, 4, 953-974 (2010) · Zbl 1202.28013 · doi:10.1007/s11785-009-0033-1
[22] Peres, Y.; Rams, M.; Simon, K.; Solomyak, B., Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets, Proc. Amer. Math. Soc., 129, 9, 2689-2699 (2001) · Zbl 0980.28005 · doi:10.1090/S0002-9939-01-05969-X
[23] Ruan, HJ; Su, WY; Yao, K., Box dimension and fractional integral of linear fractal interpolation functions, J. Approx. Theory, 161, 1, 187-197 (2009) · Zbl 1181.41005 · doi:10.1016/j.jat.2008.08.012
[24] Schief, A., Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122, 1, 111-115 (1994) · Zbl 0807.28005 · doi:10.1090/S0002-9939-1994-1191872-1
[25] Verma, S., Viswanathan, P.: A revisit to \(\alpha \)-fractal function and box dimension of its graph. Fractals 27(6), 1950090 (2019) · Zbl 1434.28037
[26] Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Res. Math. 75(1), Paper No. 28, 26 (2020) · Zbl 1435.28015
[27] Vijender, N.: Approximation by hidden variable fractal functions: a sequential approach. Res. Math. 74(4), Paper No. 192, 23 (2019) · Zbl 1428.28019
[28] Vijender, N., Bernstein fractal trigonometric approximation, Acta Appl. Math., 159, 11-27 (2019) · Zbl 1412.30127 · doi:10.1007/s10440-018-0182-1
[29] Wang, HY; Yu, JS, Fractal interpolation functions with variable parameters and their analytical properties, J. Approx. Theory, 175, 1-18 (2013) · Zbl 1303.28014 · doi:10.1016/j.jat.2013.07.008
[30] Ye, Y.-L.: Separation properties for self-conformal sets. Stud. Math. 152(1), 33-44 (2002) · Zbl 1034.28005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.