×

The second fundamental theorem of invariant theory for the orthosymplectic supergroup. (English) Zbl 1478.16034

Summary: The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme \(\text{OSp}(m|2n)\) states that there is a full functor from the Brauer category with parameter \(m-2n\) to the category of tensor representations of \(\text{OSp}(m|2n)\). This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra \(\mathcal{B}_r(m-2n)\) to endomorphisms of \(V^{\otimes r}\) is an isomorphism if and only if \(r<(m+1)(n+1)\).

MSC:

16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras)
15A72 Vector and tensor algebra, theory of invariants
17B20 Simple, semisimple, reductive (super)algebras

References:

[1] Atiyah, M., Bott, R. and Patodi, V. K., On the heat equation and the index theorem, Invent. Math.19 (1973), 279-330. · Zbl 0257.58008
[2] Baha Balantekin, A. and Bars, I., Representations of supergroups, J. Math. Phys.22(8) (1981), 1810-1818. · Zbl 0547.22014
[3] Berele, A., Invariant theory for matrices over the Grassmann algebra, Adv. Math.237 (2013), 33-61. · Zbl 1276.16015
[4] Berele, A. and Regev, A., Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math.64 (1987), 118-175. · Zbl 0617.17002
[5] Deligne, P. and Morgan, J. W., “Notes on supersymmetry (following Joseph Bernstein)”, in Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), American Mathematical Society, Providence, RI, 1999, 41-97. · Zbl 1170.58302
[6] Deligne, P., Lehrer, G. I. and Zhang, R. B., The first fundamental theorem of invariant theory for the orthosymplectic super group, Adv. Math.327 (2018), 4-24. · Zbl 1391.14103
[7] Ehrig, M. and Stroppel, C., Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra, Math. Z.284(1-2) (2016), 595-613. · Zbl 1393.17017
[8] Dondi, P. H. and Jarvis, P. D., Diagram and superfield techniques in the classical superalgebras, J. Phys.A 14(3) (1981), 547-563. · Zbl 0449.17002
[9] Goodman, R. and Wallach, N. R., Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 2003, third corrected printing. · Zbl 0901.22001
[10] Graham, J. J. and Lehrer, G. I., Cellular algebras, Invent. Math.123 (1996), 1-34. · Zbl 0853.20029
[11] Graham, J. J. and Lehrer, G. I., The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2)44(3-4) (1998), 173-218. · Zbl 0964.20002
[12] Graham, J. J. and Lehrer, G. I., Diagram algebras, Hecke algebras and decomposition numbers at roots of unity, Ann. Sci. Éc. Norm. Supér. (4)36 (2003), 479-524. · Zbl 1062.20003
[13] Graham, J. J. and Lehrer, G. I., “Cellular algebras and diagram algebras in representation theory”, Representation Theory of Algebraic Groups and Quantum Groups, , 141-173. Math. Soc. Japan, Tokyo, 2004. · Zbl 1135.20302
[14] Kac, V., Lie superalgebras, Adv. Math.26(1) (1977), 8-96. · Zbl 0366.17012
[15] Lehrer, G. I. and Zhang, R. B., Strongly multiplicity free modules for Lie algebras and quantum groups, J. Algebra306 (2006), 138-174. · Zbl 1169.17003
[16] Lehrer, G. I. and Zhang, R. B., “A Temperley-Lieb analogue for the BMW algebra”, in Representation Theory of Algebraic Groups and Quantum Groups, , Birkhäuser/Springer, New York, 2010, 155-190. · Zbl 1260.16030
[17] Lehrer, G. I. and Zhang, R. B., The second fundamental theorem of invariant theory for the orthogonal group, Ann. of Math. (2)176 (2012), 2031-2054. · Zbl 1263.20043
[18] Lehrer, G. I. and Zhang, R. B., The Brauer category and invariant theory, J. Eur. Math. Soc.17 (2015), 2311-2351. · Zbl 1328.14079
[19] Lehrer, G. I. and Zhang, R. B., The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Comm. Math. Phys.349 (2017), 661-702. · Zbl 1360.22027
[20] Lehrer, G. I., Zhang, H. and Zhang, R. B., A quantum analogue of the first fundamental theorem of invariant theory, Comm. Math. Phys.301 (2011), 131-174. · Zbl 1262.17008
[21] Procesi, C., Lie Groups. An Approach through Invariants and Representations, Universitext, Springer, New York, 2007, xxiv+596 pp. · Zbl 1154.22001
[22] Salam, A. and Strathdee, J., Super-gauge transformations, Nuclear Phys.B76 (1974), 477-482.
[23] Scheunert, M., The Theory of Lie Superalgebras; An Introduction, , Springer, Berlin-Heidelberg-New York, 1979. · Zbl 0407.17001
[24] Scheunert, M. and Zhang, R. B., The general linear supergroup and its Hopf superalgebra of regular functions, J. Algebra254(1) (2002), 44-83. · Zbl 1047.17016
[25] Sergeev, A., An analogue of the classical theory of invariants for Lie superalgebras, Funktsional. Anal. i Prilozhen.26(3) (1992), 88-90; (Russian) translation in Funct. Anal. Appl. 26(3) (1992), 223-225. · Zbl 0838.17036
[26] Sergeev, A., An analog of the classical invariant theory for Lie superalgebras. I, II, Michigan Math. J.49(1) (2001), 113-146; 147-168. · Zbl 1002.17002
[27] Varadarajan, V. S., Supersymmetry for Mathematicians: An Introduction, , New York University, Courant Institute of Mathematical Sciences, New York, 2004, American Mathematical Society, Providence, RI. · Zbl 1142.58009
[28] De Witt, B., “Supermanifolds”, in Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 1992.
[29] Zhang, Y., On the second fundamental theorem of invariant theory for the orthosymplectic supergroup, J. Algebra501 (2018), 394-434. · Zbl 1441.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.