×

On maps preserving products equal to a diagonalizable matrix. (English) Zbl 1478.15040

The authors prove the following theorem, which is an example of a linear preserver problem (see, e.g., [C.-K. Li and N.-K. Tsing, Linear Algebra Appl. 162–164, 217–235 (1992; Zbl 0762.15016)]).
Let \(D_{1}\) and \(D_{2}\) be similar diagonalizable matrices in the matrix algebra \(M_{n}(\mathbb{C})\). Let \(f\) be a bijective linear transformation from \(M_{n}(\mathbb{C})\) onto itself with the property that for all \(A,B\in M_{n}(\mathbb{C})\): \( AB=D_{1}\) \(\implies \) \(f(A)f(B)=D_{2}\). Then it is proved that:
(i) If \(D_{1}\) is singular then there exists a nonzero scalar \(b\) and an invertible matrix \(P\) such that \(b^{2}PD_{1}=D_{2}P\) and \( f(X)=bPXP^{-1}\) for all \(X\in M_{n}(\mathbb{C})\) (*);
(ii) if \(D_{1}\) is nonsingular then either (*) holds or there exists a nonzero scalar \(b\) and invertible matrix \(P\) such that \(b^{2}PD_{1}^{T}=D_{2}^{-1}P\) and \( f(X)=bD_{2}PX^{T}P^{-1}\) for all \(X\in M_{n}(\mathbb{C})\). Conversely, it easy to verify that when \(f\) has these forms \(AB=D_{1}\) \(\implies \) \( f(A)f(B)=D_{2}\).

MSC:

15A86 Linear preserver problems
15A04 Linear transformations, semilinear transformations
15A20 Diagonalization, Jordan forms
15A23 Factorization of matrices
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)

Citations:

Zbl 0762.15016
Full Text: DOI

References:

[1] Alaminos, J.; Extremera, J.; Villena, A. R., Orthogonality preserving linear maps on group algebras, Math. Proc. Camb. Phil. Soc, 158, 3, 493-504 (2015) · Zbl 1371.43003 · doi:10.1017/S0305004115000110
[2] Catalano, L. (2019). On maps preserving products equal to a rank-one idempotent. Linear Multilinear Algebra. To appear.
[3] Catalano, L., Chang-Lee, M. (2019). On maps preserving rank-one nilpotents. Linear Multilinear Algebra. To appear.
[4] Catalano, L.; Hsu, S.; Kapalko, R., On maps preserving products of matrices, Linear Algebra Appl, 563, 193-206 (2019) · Zbl 1430.15021 · doi:10.1016/j.laa.2018.10.029
[5] Chebotar, M. A.; Ke, W.-F.; Lee, P.-H., Maps characterized by action on zero products, Pacific J. Math, 216, 2, 217-228 (2004) · Zbl 1078.16034 · doi:10.2140/pjm.2004.216.217
[6] Chebotar, M. A.; Ke, W.-F.; Lee, P.-H.; Shiao, L.-S., On maps preserving products, Can. Math. Bull, 48, 3, 355-369 (2005) · Zbl 1092.16018 · doi:10.4153/CMB-2005-033-8
[7] Chebotar, M. A.; Ke, W.-F.; Lee, P.-H.; Zhang, R., On maps preserving zero Jordan products, Mh. Math, 149, 2, 91-101 (2006) · Zbl 1109.16030 · doi:10.1007/s00605-005-0371-7
[8] Cui, J.; Hou, J., Linear maps on von Neumann algebras preserving the zero products or TR-rank, Bull. Austral. Math. Soc, 65, 1, 79-91 (2002) · Zbl 1054.47027
[9] Essannouni, H.; Kaidi, A., Le théorème de hua pour les algeèbres artiniennes simples, Linear Algebra Appl, 297, 1-3, 9-22 (1999) · Zbl 0958.16023 · doi:10.1016/S0024-3795(99)00081-6
[10] Ginsburg, V.; Julius, H.; Velasquez, R., On maps preserving Lie products equal to a rank-one nilpotent, Linear Algebra Appl, 593, 212-227 (2020) · Zbl 1445.15013 · doi:10.1016/j.laa.2020.02.007
[11] Julius, H. (2019). On maps preserving Lie products equal to e11 − e22. Linear Multilinear Algebra. To appear.
[12] Li, C.-K.; Tsing, N.-K., Linear preserver problems: a brief introduction and some special techniques, Linear Algebra Appl, 162/164, 217-235 (1992) · Zbl 0762.15016
[13] Lin, Y.-F.; Wong, T.-L., A note on 2-local maps, Proc. Edinburgh Math. Soc, 49, 3, 701-708 (2006) · Zbl 1112.16033 · doi:10.1017/S0013091504001142
[14] Watkins, W., Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl, 14, 1, 29-35 (1976) · Zbl 0329.15005 · doi:10.1016/0024-3795(76)90060-4
[15] Wong, W. J., Maps on simple algebras preserving zero products. I. The associative case, Pacific J. Math, 89, 1, 229-247 (1980) · Zbl 0405.16006 · doi:10.2140/pjm.1980.89.229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.