×

On almost valuation ring pairs. (English) Zbl 1478.13014

A commutative and unital ring \(R\) is an AV-ring (Almost Valuation Ring) if for every \(a\), \(b\) in \(R\) there exists a positive integer \(n\) such that \(a^nR\subseteq b^nR\) or \(b^nR\subseteq a^nR\). Being an AV-ring implies being quasi-local. If \(R\) is a domain, then it is an AV-domain if for every \(a\) in its quotient field there is a positive integer \(n\) such that \(a^n\in R\) or \(a^{-n}\in R\). Now, let \(S\) be a commutative overring of \(R\) with the same unit element. Then \((R,S)\) is an AV-ring pair if for every ring in the set \([R,S]\) (of all rings \(T\) such that \(R\subseteq T\subseteq S\)) is an AV-ring. In the same way, \((R,S)\) is an AV-domain pair if every element of \([R,S]\) is an AV-domain. This paper provides a broad study of the AV-ring pairs. The reader can find more or less thirty necessary and sufficient conditions (NSC) for being an AV-ring pair, ten for being an AV-domain pair, and other characterizations. For example, \((R,S)\) is an AV-ring pair if, and only if, \((R,\overline{R}_S)\) and \((\overline{R}_S,S)\) are AV-ring pairs, where \(\overline{R}_S\) is the integral closure of \(R\) in \(S\). The authors look at extensions of rings \((R\subset S)\) satisfying different conditions, and they get NSC for \((R,S)\) being an AV-ring pair. For example, if \(R\) is a field and \(S\) is a nonzero \(R\)-algebra, then a NSC is: \(R\subset S\) being an integral extension and \(S\) being quasi-local. They consider reduced rings (i.e.they do not contain nonzero nilpotent elements), normal pairs (i.e.every element of \([R,S]\) is integrally closed in \(S\)), P-extensions (every element of \(S\) is the root of a polynomial at least one of whose coefficients is a unit), root extensions (for every \(s\in S\) there is a positive integer \(n\) such that \(s^n\in R\)). Several propositions are dedicated to inductive families of AV-ring pairs, and we can deduce NSC for being AV-ring pairs which rely on the finite type \(R\) sub-algebras of \(S\). The authors show that being an AV-ring or an AV-ring pair can be proved by means of pullback of quotients by prime ideals. A section is dedicated to the case where \((R\subset S)\) is a minimal pair (i.e.\([R,S]=\{R,S\}\)). The sixth section focuses on the case where \(R\) is not an AV-domain, but every ring in \(]R,S]\) is an AV-domain. In the last section, locally divided domains are studied (if \(R\) is a domain, then it is locally divided if every maximal ideal \(M\) is equal to \(MR_M\)). In this section, some proofs rely on going-down (\(R\subset S\) satisfies going-down if for every chain \(I_1\supseteq \cdots \supseteq I_n\) of prime ideals of \(R\) such that there exists a chain \(J_1\supseteq \cdots \supseteq J_{n-1}\) of prime ideals of \(S\) such that every \(J_k\) lies over \(I_k\) (\(1\leq k<n\)), the later chain can be completed in a chain \(J_1\supseteq \cdots \supseteq J_n\) where \(J_n\) lies over \(I_n\)). So, many aspects of AV-ring pairs and AV-domain pairs are studied through the eight lemmas, eleven propositions, nine theorems, fifteen corollaries, three examples and three remarks of this paper.

MSC:

13B99 Commutative ring extensions and related topics
12F05 Algebraic field extensions
13A99 General commutative ring theory
13A18 Valuations and their generalizations for commutative rings
13B21 Integral dependence in commutative rings; going up, going down
13G05 Integral domains
Full Text: DOI

References:

[1] Anderson, D. F. and Dobbs, D. E., Pairs of rings with the same prime ideals, Canadian J. Math.32(2) (1980) 362-384. · Zbl 0406.13001
[2] Anderson, D. D., Knopp, K. R. and Lewin, R. L., Almost Bézout domains, II, J. Algebra167 (1994) 547-556. · Zbl 0821.13006
[3] D. D. Anderson, S. Xing and M. Zafrullah, Almost discrete valuation domains, preprint, 2019, arXiv:1912.02304. · Zbl 1461.13002
[4] Anderson, D. D. and Zafrullah, M., Almost Bézout domains, J. Algebra142(2) (1991) 285-309. · Zbl 0749.13013
[5] Anderson, D. D. and Zafrullah, M., Almost Bézout domains, III, Bull. Math. Soc. Math. Roumanie51(99) (2008) 3-9. · Zbl 1199.13023
[6] Ayache, A. and Jaballah, A., Residually algebraic pairs of rings, Math. Z.225 (1997) 49-65. · Zbl 0868.13007
[7] Azaiez, N. Ouled and Moutui, M. A., Almost valuation property in bi-amalgamations and pairs of rings, J. Algebra Appl.11(6) (2019) 1950104, 14 pp. · Zbl 1419.13010
[8] Nasr, M. Ben and Jarboui, N., New results about normal pairs of rings with zero-divisors, Ric. Mat.63(1) (2014) 149-155. · Zbl 1301.13008
[9] Bouvier, A., Dobbs, D. E. and Fontana, M., Universally catenarian integral domains, Adv. Math.72(2) (1988) 211-238. · Zbl 0695.13014
[10] Bouvier, A. and Fontana, M., The catenarian property of the polynomial rings over a Prüfer domain, in Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, , Vol. 1146 (Springer, Berlin/New York, 1985), pp. 340-354. · Zbl 0577.13011
[11] Chatham, R. D. and Dobbs, D. E., On open ring pairs of commutative rings, Houston J. Math.31(1) (2005) 65-74. · Zbl 1101.13009
[12] Davis, E. D., Overrings of commutative rings III: Normal pairs, Trans. Amer. Math. Soc.182 (1973) 175-185. · Zbl 0272.13004
[13] Dobbs, D. E., On going down for simple overrings, II, Comm. Algebra1 (1974) 439-458. · Zbl 0285.13001
[14] Dobbs, D. E., Ascent and descent of going-down rings for integral extensions, Austral. Bull. Math.15(2) (1976) 253-264. · Zbl 0327.13007
[15] Dobbs, D. E., Divided rings and going-down, Pacific J. Math.67 (1976) 353-363. · Zbl 0326.13002
[16] Dobbs, D. E., On INC-extensions and polynomials with unit content, Can. Math. Bull.23 (1980) 37-42. · Zbl 0432.13007
[17] Dobbs, D. E., Going-down rings with zero-divisors, Houston J. Math.23(1) (1997) 1-12. · Zbl 0896.13006
[18] Dobbs, D. E., El Khalfi, A. and Mahdou, N., Trivial extensions satisfying certain valuation-like properties, Comm. Algebra47(5) (2019) 2060-2077. · Zbl 1423.13065
[19] Dobbs, D. E., Fontana, M. and Papick, I. J., Direct limits and going-down, Comment. Math. Univ. St. Paul.31(2) (1982) 129-135. · Zbl 0501.13001
[20] Dobbs, D. E. and Fontana, M., Locally pseudo-valuation domains, Ann. Mat. Pura Appl.134 (1983) 147-168. · Zbl 0531.13012
[21] Dobbs, D. E. and Fontana, M., Universally going-down homomorphisms of commutative rings, J. Algebra90(2) (1984) 410-429. · Zbl 0544.13004
[22] Dobbs, D. E. and Fontana, M., Universally going-down integral domains, Arch. Math. (Basel)42(5) (1984) 426-429. · Zbl 0526.13007
[23] Dobbs, D. E. and Papick, I. J., On going down for simple overrings, III, Proc. Amer. Math. Soc.54 (1976) 35-38. · Zbl 0285.13002
[24] Dobbs, D. E. and Picavet, G., Straight rings, Comm. Algebra37(3) (2009) 757-793. · Zbl 1159.13012
[25] Dobbs, D. E., Picavet, G. and Picavet-L’Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, M., J. Algebra371 (2012) 391-429. · Zbl 1271.13022
[26] Dobbs, D. E. and Shapiro, J., A classification of the minimal ring extensions of certain commutative rings, J. Algebra308(2) (2007) 800-821. · Zbl 1118.13004
[27] Dobbs, D. E. and Shapiro, J., Normal pairs with zero-divisors, J. Algebra Appl.10(2) (2011) 335-356. · Zbl 1221.13012
[28] Ferrand, D. and Olivier, J.-P., Homomorphismes minimaux d’anneaux, J. Algebra16 (1970) 461-471. · Zbl 0218.13011
[29] Fontana, M., Topologically defined classes of commutative rings, Ann. Mat. Pura App.123(4) (1980) 331-355. · Zbl 0443.13001
[30] Gilmer, R., Multiplicative Ideal Theory (Dekker, New York, 1972). · Zbl 0248.13001
[31] Gilmer, R. and Hoffmann, J. F., A characterization of Prüfer domains in terms of polynomials, Pacific J. Math.60(1) (1975) 81-85. · Zbl 0307.13011
[32] Hedstrom, J. R. and Houston, E. G., Pseudo-valuation domains, Pacific J. Math.75(1) (1978) 137-147. · Zbl 0368.13002
[33] Jahani-Nezhad, R. and Khosahayand, F., Pseudo-almost valuation rings, Bull. Iranian Math. Soc.41(4) (2015) 815-824. · Zbl 1373.13022
[34] Jahani-Nezhad, R. and Khosahayand, F., Almost valuation rings, Bull. Iranian Math. Soc.43(3) (2017) 807-816. · Zbl 1405.13006
[35] Jarboui, N. and Trabelsi, S., Some results about proper overrings of pseudo-valuation domains, J. Algebra Appl.15(5) (2016), Article ID: 1650099, 16 pp. · Zbl 1343.13002
[36] Kabbour, M. and Mahdou, N., On valuation rings, Comm. Algebra39(1) (2011) 176-183. · Zbl 1211.13014
[37] Kaplansky, I., Commutative Rings, Rev. edn. (Univ. Chicago Press, Chicago, 1974). · Zbl 0296.13001
[38] Knebusch, M. and Zhang, D., Manis Valuations and Prüfer extensions I, A New Chapter in Commutative Algebra, , Vol. 1791 (Springer-Verlag, Berlin, 2002). · Zbl 1033.13001
[39] Lang, S., Algebra (Addison-Wesley, Reading, MA, 1965). · Zbl 0193.34701
[40] Malik, S. and Mott, J. L., Strong S-domains, J. Pure Appl. Algebra28 (1983) 249-264. · Zbl 0536.13001
[41] Mimouni, A., Prüfer-like conditions and pullbacks, J. Algebra279(2) (2004) 685-693. · Zbl 1095.13533
[42] Nagata, M., A type of integral extension, J. Math. Soc. Japan20 (1968) 266-267. · Zbl 0155.07901
[43] Papick, I. J., Topologically defined classes of going-down domains, Trans. Amer. Math. Soc.219 (1976) 1-37. · Zbl 0345.13005
[44] Picavet, G. and Picavet-L’Hermitte, Quasi-Prüfer extensions of rings, M., in Rings, Polynomials, and Modules (Springer, Cham, 2017), pp. 307-336. · Zbl 1400.13012
[45] Ratliff, L. J. Jr., On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals, II, Amer. J. Math.92 (1970) 99-144. · Zbl 0198.06003
[46] Richman, F., Generalized quotient rings, Proc. Amer. Math. Soc.16 (1965) 794-799. · Zbl 0145.27406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.