×

Crouzeix-Raviart and Raviart-Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition. (English) Zbl 1477.65223

Summary: We investigate the piecewise linear nonconforming Crouzeix-Raviart and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and the Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasize that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65D05 Numerical interpolation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Acosta, G.; Durán, RG, The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations, SIAM J. Numer. Anal, 37, 18-36 (1999) · Zbl 0948.65115 · doi:10.1137/S0036142997331293
[2] Apel, TH, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics (1999), Stuttgart: Teubner, Stuttgart · Zbl 0917.65090
[3] Arnord, DT; Brezzi, F., Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM, 19, 7-32 (1985) · Zbl 0567.65078 · doi:10.1051/m2an/1985190100071
[4] Babuška, I.; Aziz, AK, On the angle condition in the finite element method, SIAM J. Numer. Anal., 13, 214-226 (1976) · Zbl 0324.65046 · doi:10.1137/0713021
[5] Boffi, D.; Brezzi, F.; Demkowicz, LF; Durén, RG; Falk, RS; Fortin, M., Mixed Finite Elements, Compatibility Conditions, and Applications: Lectures Given at the C.I.M.E Summer School, Italy, 2006. Lecture Notes in Mathematics (2008), Berlin: Springer, Berlin · Zbl 1138.65001 · doi:10.1007/978-3-540-78319-0
[6] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications (2013), New York: Springer Verlag, New York · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[7] Braess, D., Finite elements theory, fast solvers, and application in solid mechanics (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1118.65117 · doi:10.1017/CBO9780511618635
[8] Brenner, SC, Forty years of the Crouzeix-Raviart element, Numer. Methods Partial Differ. Equ., 31, 367-396 (2015) · Zbl 1310.65142 · doi:10.1002/num.21892
[9] Brenner, SC; Scott, LR, The Mathematical Theory of Finite Element Methods (2008), New York: Springer Verlag, New York · Zbl 1135.65042 · doi:10.1007/978-0-387-75934-0
[10] Ern, A.; Guermond, JL, Theory and Practice of Finite Elements (2004), New York: Springer Verlag, New York · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[11] Girault, V.; Raviart, PA, Finite Element Methods for Navier-Stokes Equations (1986), New York: Springer-Verlag, New York · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[12] Grisvard, P., Elliptic Problems in Nonsmooth Domains (2011), New York: SIAM, New York · Zbl 1231.35002 · doi:10.1137/1.9781611972030
[13] Gudi, T., A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79, 2169-2189 (2010) · Zbl 1201.65198 · doi:10.1090/S0025-5718-10-02360-4
[14] Hu, J.; Ma, R., The enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements, J. Sci. Comput., 63, 410-425 (2015) · Zbl 1319.65111 · doi:10.1007/s10915-014-9899-9
[15] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: General theory of interpolation error estimates on anisotropic meshes. Jpn. J. Ind. Appl. Math. (to appear). See also Erratum in arxiv.org/abs/2002.09721 · Zbl 1467.65009
[16] Keast, P., Moderate-degree tetrahedral quadrature formulas, Comput. Methods Appl. Mech. Eng., 55, 3, 339-348 (1986) · Zbl 0572.65008 · doi:10.1016/0045-7825(86)90059-9
[17] Kikuchi, F.; Saito, N., Principle of Numerical Analysis (in Japanese) (2016), Osaka: Iwatani-Shoten, Osaka
[18] Kobayashi, K.; Tsuchiya, T., Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods, Jpn. J. Ind. Appl. Math., 35, 1191-1211 (2018) · Zbl 1538.65528 · doi:10.1007/s13160-018-0325-9
[19] Liu, X., Kikuchi, F.: Estimation of error constants appearing in non-conforming linear triangular finite element, Proceedings of APCOM’07-EPMESC XI (2007) · Zbl 1499.65675
[20] Liu, X.; Kikuchi, F., Explicit estimation of error constants appearing in non-conforming linear triangular finite element method, Appl. Math., 63, 381-397 (2018) · Zbl 1499.65675 · doi:10.21136/AM.2018.0097-18
[21] Marini, LD, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22, 493-496 (1985) · Zbl 0573.65082 · doi:10.1137/0722029
[22] Mario, B., A note on the Poincaré inequality for convex domains, Z. Anal. ihre. Anwend., 22, 751-756 (2003) · Zbl 1057.26011
[23] Payne, LE; Weinberger, HF, An optimal Poincaré-inequality for convex domains, Arch. Rational Mech. Anal., 5, 286-292 (1960) · Zbl 0099.08402 · doi:10.1007/BF00252910
[24] Stroud, AH, Approximate Calculation of Multiple Integrals (1971), New Jersey: Prentice-Hall, New Jersey · Zbl 0379.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.