×

Strong representation equivalence for compact symmetric spaces of real rank one. (English) Zbl 1477.58025

Summary: Let \(G/K\) be a simply connected compact irreducible symmetric space of real rank one. For each \(K\)-type \(\tau\) we compare the notions of \(\tau \)-representation equivalence with \(\tau \)-isospectrality. We exhibit infinitely many \(K\)-types \( \tau\) so that, for arbitrary discrete subgroups \(\Gamma\) and \(\Gamma'\) of \(G\), if the multiplicities of \( \lambda\) in the spectra of the Laplace operators acting on sections of the induced \(\tau \)-vector bundles over \(\Gamma\setminus G/K\) and \(\Gamma'\setminus G/K\) agree for all but finitely many \(\lambda \), then \(\Gamma\) and \(\Gamma'\) are \(\tau \)-representation equivalent in \(G\) (i.e., \( \dim \operatorname{Hom}_G(V_\pi, L^2(\Gamma\setminus G))=\dim \operatorname{Hom}_G(V_\pi, L^2(\Gamma'\setminus G))\) for all \(\pi\in \widehat G\) satisfying \(\operatorname{Hom}_K(V_\tau,V_\pi)\neq0)\). In particular, \( \Gamma\setminus G/K\) and \(\Gamma'\setminus G/K\) are \(\tau \)-isospectral (i.e., the multiplicities agree for all \(\lambda\)).
We specially study the case of \(p\)-form representations, i.e., the irreducible subrepresentations \(\tau\) of the representation \(\tau_p\) of \(K\) on the \(p\)-exterior power of the complexified cotangent bundle \(\bigwedge^p T_{\mathbb C}^*M\). We show that for such \(\tau \), in most cases \(\tau \)-isospectrality implies \(\tau \)-representation equivalence. We construct an explicit counterexample for \(G/K= \operatorname{SO}(4n)/ \operatorname{SO}(4n-1)\simeq S^{4n-1} \).

MSC:

58J53 Isospectrality
22C05 Compact groups
22E46 Semisimple Lie groups and their representations
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

References:

[1] 10.4153/s0008414x19000178 · Zbl 1437.58020 · doi:10.4153/s0008414x19000178
[2] 10.1093/imrn/rnq243 · Zbl 1226.22014 · doi:10.1093/imrn/rnq243
[3] 10.1007/978-3-662-12918-0 · doi:10.1007/978-3-662-12918-0
[4] 10.2140/pjm.2005.222.1 · Zbl 1100.43004 · doi:10.2140/pjm.2005.222.1
[5] 10.1016/j.jfa.2004.08.013 · Zbl 1060.43004 · doi:10.1016/j.jfa.2004.08.013
[6] 10.1002/cpa.3160420803 · Zbl 0709.53030 · doi:10.1002/cpa.3160420803
[7] 10.1007/s13226-012-0005-4 · Zbl 1365.22001 · doi:10.1007/s13226-012-0005-4
[8] 10.1007/978-1-4612-0979-9 · doi:10.1007/978-1-4612-0979-9
[9] 10.1112/S1461157000001273 · Zbl 1111.58028 · doi:10.1112/S1461157000001273
[10] 10.1016/j.jalgebra.2007.08.010 · Zbl 1154.22020 · doi:10.1016/j.jalgebra.2007.08.010
[11] ; Ikeda, Osaka J. Math., 17, 75 (1980) · Zbl 0436.58025
[12] ; Ikeda, Osaka J. Math., 15, 515 (1978) · Zbl 0392.53033
[13] 10.1090/S0002-9947-2014-06102-3 · Zbl 1301.22007 · doi:10.1090/S0002-9947-2014-06102-3
[14] ; Knapp, Lie groups beyond an introduction. Progr. Math., 140 (2002) · Zbl 1075.22501
[15] 10.4153/CMB-2013-013-2 · Zbl 1298.58024 · doi:10.4153/CMB-2013-013-2
[16] 10.1090/proc/14980 · Zbl 1440.22009 · doi:10.1090/proc/14980
[17] 10.1063/1.4993851 · Zbl 1430.17024 · doi:10.1063/1.4993851
[18] 10.1007/s12220-013-9439-0 · Zbl 1310.58024 · doi:10.1007/s12220-013-9439-0
[19] 10.1007/s40863-019-00154-3 · Zbl 1469.58020 · doi:10.1007/s40863-019-00154-3
[20] 10.1090/S0002-9904-1971-12767-2 · Zbl 0228.17003 · doi:10.1090/S0002-9904-1971-12767-2
[21] 10.21099/tkbjm/1496163248 · Zbl 0906.58051 · doi:10.21099/tkbjm/1496163248
[22] 10.21099/tkbjm/1496165027 · Zbl 1123.22006 · doi:10.21099/tkbjm/1496165027
[23] 10.1006/jfan.1995.1150 · Zbl 0847.58077 · doi:10.1006/jfan.1995.1150
[24] 10.1007/BF02566419 · Zbl 0871.58012 · doi:10.1007/BF02566419
[25] ; Schoen, Lectures on differential geometry. Conf. Proc. Lect. Notes Geom. Topol., 1 (1994) · Zbl 0830.53001
[26] 10.2307/1971195 · Zbl 0585.58047 · doi:10.2307/1971195
[27] 10.1090/mmono/135 · doi:10.1090/mmono/135
[28] ; Tsukamoto, Osaka J. Math., 18, 407 (1981) · Zbl 0477.53048
[29] ; Wallach, Harmonic analysis on homogeneous spaces. Pure Appl. Math., 19 (1973) · Zbl 0265.22022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.