×

Intriguing invariants of centers of ellipse-inscribed triangles. (English) Zbl 1477.51008

In this paper, the authors describe intriguing properties of a 1d family of triangles: two vertices are pinned to the boundary of an ellipse while a third one sweeps it. They prove that: (i) if a triangle center is a fixed affine combination of barycenter and orthocenter, its locus is an ellipse; (ii) over the family of said affine combinations, the centers of said loci sweep a line; (iii) over the family of parallel fixed vertices, said loci rigidly translate along a second line.

MSC:

51M04 Elementary problems in Euclidean geometries
51N20 Euclidean analytic geometry
53A04 Curves in Euclidean and related spaces

References:

[1] Akopyan, A.: Locus of \(x_\rho\) is an ellipse if it lies on the Euler line at fixed affine combination of \(x_2, x_4\). Private (2020) Communication
[2] Chavez-Caliz, A., More about areas and centers of poncelet polygons, Arnold Math. J., 7, 91-106 (2021) · Zbl 1482.51016 · doi:10.1007/s40598-020-00154-8
[3] Coxeter, HS, The Real Projective Plane (1993), New York: Springer, New York · Zbl 0772.51001 · doi:10.1007/978-1-4612-2734-2
[4] Dykstra, J., Peterson, C., Rall, A., Shadduck, E.: Orbiting vertex: follow that triangle center!. (2006)
[5] Fierobe, C., On the circumcenters of triangular orbits in elliptic billiard, J. Dyn. Control Syst. (2021) · Zbl 1490.37038 · doi:10.1007/s10883-021-09537-2
[6] Gallatly, W., The Modern Geometry of the Triangle (1913), London: Hodgson, London · JFM 41.0574.02
[7] Garcia, R., Elliptic billiards and ellipses associated to the 3-periodic orbits, Am. Math. Mon., 126, 6, 491-504 (2019) · Zbl 1444.37023 · doi:10.1080/00029890.2019.1593087
[8] Garcia, R., Reznik, D.: Loci of the Brocard points over selected triangle families. arXiv:2009.08561. (2020)
[9] Garcia, R.; Reznik, D., Related by similarity I: poristic triangles and 3-periodics in the elliptic billiard, Intl. J. of Geom., 10, 3, 52-70 (2021) · Zbl 1513.51019
[10] Garcia, R., Reznik, D., Koiller, J.: Loci of 3-periodics in an elliptic billiard: why so many ellipses? arXiv:2001.08041. (2020)
[11] Garcia, R.; Reznik, D.; Stachel, H.; Helman, M., Steiner’s hat: a constant-area deltoid associated with the ellipse, J. Croatian Soc. for Geom. Gr. (KoG), 24, 12-28 (2020) · Zbl 1467.51011
[12] Guggenheimer, H., Differential Geometry (1977), New York: Dover, New York · Zbl 0357.53002
[13] Kimberling, C.: Encyclopedia of triangle centers. https://faculty.evansville.edu/ck6/encyclopedia/ETC.html. (2019) · Zbl 1423.05023
[14] Kimberling, C.: Central lines of triangle centers. https://bit.ly/34vVoJ8. (2020) · Zbl 1442.51007
[15] Kovačević, N.; Sliepčević, A., On the certain families of triangles, KoG-Zagreb, 16, 21-27 (2012) · Zbl 1296.51037
[16] Levi, M.; Tabachnikov, S., The Poncelet grid and billiards in ellipses, Am. Math. Mon., 114, 10, 895-908 (2007) · Zbl 1140.51014 · doi:10.1080/00029890.2007.11920482
[17] MacQueen, ML; Hartley, RW, Elliptic Euleroids, Amer. Math. Monthly, 53, 511-516 (1946) · Zbl 0060.33407 · doi:10.2307/2305067
[18] Monroe, D., Blue.: Locus of orthocenter of triangle inscribed in ellipse. Stack Exchange. https://bit.ly/2T6OqFh (2019)
[19] Moses, P.: An affine combination of two triangle centers is a triangle center. Private (2020) Communication
[20] Murnaghan, F. D.: Discussions: note on Mr. Weaver’s paper “a system of triangles related to a poristic system” (1924, 337-340). Amer. Math. Monthly, 32(1): 37-41. www.jstor.org/stable/2300090. (1925) · JFM 51.0471.03
[21] Odehnal, B., Poristic loci of triangle centers, J. Geom. Graph., 15, 1, 45-67 (2011) · Zbl 1266.51024
[22] Pamfilos, P., Triangles with given incircle and centroid, Forum Geometricorum, 11, 27-51 (2011) · Zbl 1222.51012
[23] Reznik, D.: The locus of the incenter over 3-periodics in the elliptic billiard is an ellipse. YouTube. https://youtu.be/BBsyM7RnswA. (2011)
[24] Reznik, D., Garcia, R., Stachel, H.: Area-invariant pedal-like curves derived from the ellipse. Submitted, arXiv:2009.02581. (2020)
[25] Romaskevich, O., On the incenters of triangular orbits on elliptic billiards, Enseign. Math., 60, 3-4, 247-255 (2014) · Zbl 1371.37073 · doi:10.4171/LEM/60-3/4-2
[26] Schwartz, R.: Rectangle coincidences and sweepouts. arXiv:1809.03070. (2019)
[27] Schwartz, R.; Tabachnikov, S., Centers of mass of Poncelet polygons, 200 years after, Math. Intelligencer, 38, 2, 29-34 (2016) · Zbl 1351.01013 · doi:10.1007/s00283-016-9622-9
[28] Sliepčević, A.; Halas, H., Family of triangles and related curves, Hrvat. Akad. Znan. Umjet. Mat. Znan, 17, 515, 203-2010 (2013) · Zbl 1296.51021
[29] Stanev, M.: Locus of the centroid of the equilateral triangle inscribed in an ellipse. International Journal of Computer Discovered Mathematics (IJCDM), 4. https://bit.ly/37lXH4v. (2019)
[30] Weaver, JH, A system of triangles related to a poristic system, Amer. Math. Mon., 31, 7, 337-340 (1924) · JFM 50.0380.04 · doi:10.1080/00029890.1924.11986355
[31] Weaver, JH, Curves determined by a one-parameter family of triangles, Amer. Math. Mon., 40, 2, 85-91 (1933) · Zbl 0006.17511 · doi:10.1080/00029890.1933.11987404
[32] Weisstein, E.: Mathworld. MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.