×

Decay of correlations for unbounded observables. (English) Zbl 1477.37044

Summary: In this article, we study the decay rates of the correlation functions for a hyperbolic system \(T:M\rightarrow M\) with singularities that preserves a unique mixing SRB measure \(\mu\). We prove that, under some general assumptions, the correlations decay exponentially as \(n\rightarrow\infty\) for each pair of piecewise Hölder observables \(f,g\in L^p(\mu)\) and for each \(p>1\). As an application, we prove that the autocorrelations of the first return time functions decay exponentially for the induced maps of various billiard systems, which include the semi-dispersing billiards on a rectangle, billiards with cusps, and Bunimovich stadia. These estimates of the decay rates of autocorrelations of the first return time functions for the induced maps have an essential importance in the study of the statistical properties of nonuniformly hyperbolic systems (with singularities).

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37C83 Dynamical systems with singularities (billiards, etc.)
37A50 Dynamical systems and their relations with probability theory and stochastic processes

References:

[1] Alves J x F, Bonatti C and Viana M 2000 SRB measures for partially hyperbolic systems whose central direction is mostly expanding Invent. Math.140 351-98 · Zbl 0962.37012 · doi:10.1007/s002220000057
[2] Bálint P, Chernov N and Dolgopyat D 2011 Limit theorems for dispersing billiards with cusps Commun. Math. Phys.308 479-510 · Zbl 1241.37005 · doi:10.1007/s00220-011-1342-6
[3] Bowen R 1975 Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms(Lecture Notes in Mathematics vol 470) (Berlin: Springer) · Zbl 0308.28010 · doi:10.1007/BFb0081279
[4] Bunimovich L A 1974 On billiards close to dispersing Math. USSR Sb.23 45-67 · Zbl 0309.58018 · doi:10.1070/SM1974v023n01ABEH001713
[5] Bunimovich L A 1979 On the ergodic properties of nowhere dispersing billiards Commun. Math. Phys.65 295-312 · Zbl 0421.58017 · doi:10.1007/bf01197884
[6] Bunimovich L A, Sinai Y G and Chernov N I 1990 Markov partitions for two-dimensional hyperbolic billiards Russ. Math. Surv.45 105-52 · Zbl 0721.58036 · doi:10.1070/rm1990v045n03abeh002355
[7] Bunimovich L A, Sinai Y G and Chernov N I 1991 Statistical properties of two-dimensional hyperbolic billiards Russ. Math. Surv.46 47-106 · Zbl 0780.58029 · doi:10.1070/rm1991v046n04abeh002827
[8] Chernov N 1999 Decay of correlations in dispersing billiards J. Stat. Phys.94 513-56 · Zbl 1047.37503 · doi:10.1023/a:1004581304939
[9] Chernov N 2006 Advanced statistical properties of dispersing billiards J. Stat. Phys.122 1061-94 · Zbl 1098.82020 · doi:10.1007/s10955-006-9036-8
[10] Chernov N I and Dolgopyat D 2009 (Providence, RI: American Mathematical Society) Brownian Brownian Motion-I · Zbl 1173.60003
[11] Chernov N and Markarian R 2006 Chaotic Billiards(Mathematical Surveys and Monographs vol 127) (Providence, RI: American Mathematical Society) · Zbl 1101.37001 · doi:10.1090/surv/127
[12] Chernov N and Markarian R 2007 Dispersing billiards with cusps: slow decay of correlations Commun. Math. Phys.270 727-58 · Zbl 1113.37020 · doi:10.1007/s00220-006-0169-z
[13] Chernov N and Zhang H-K 2005 Billiards with polynomial mixing rates Nonlinearity18 1527-53 · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[14] Chernov N and Zhang H-K 2005 A family of chaotic billiards with variable mixing rates Stoch. Dyn.05 535-53 · Zbl 1111.37029 · doi:10.1142/s0219493705001572
[15] Chernov N and Zhang H-K 2007 Regularity of Bunimovich’s stadia Regul. Chaot. Dyn.12 335-56 · Zbl 1229.37031 · doi:10.1134/s1560354707030057
[16] Chernov N and Zhang H-K 2008 Improved estimate for correlations in billiards Commun. Math. Phys.277 305-21 · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[17] Chernov N and Zhang H-K 2009 On statistical properties of hyperbolic systems with singularities J. Stat. Phys.136 615-42 · Zbl 1181.37052 · doi:10.1007/s10955-009-9804-3
[18] Demers M and Zhang H-K 2011 Spectral analysis of the transfer operator for the Lorentz gas J. Mod. Dyn.5 665-709 · Zbl 1321.37034 · doi:10.3934/jmd.2011.5.665
[19] Demers M F and Zhang H-K 2013 A functional analytic approach to perturbations of the Lorentz gas Commun. Math. Phys.324 767-830 · Zbl 1385.37050 · doi:10.1007/s00220-013-1820-0
[20] Demers M F and Zhang H-K 2014 Spectral analysis of hyperbolic systems with singularities Nonlinearity27 379-433 · Zbl 1347.37070 · doi:10.1088/0951-7715/27/3/379
[21] Dolgopyat D 2001 On dynamics of mostly contracting diffeomorphisms Commun. Math. Phys.213 181-201 · Zbl 0964.37020 · doi:10.1007/s002200000238
[22] Dolgopyat D 2004 On differentiability of SRB states for partially hyperbolic systems Invent. Math.155 389-449 · Zbl 1059.37021 · doi:10.1007/s00222-003-0324-5
[23] Katok A and Strelcyn J-M 1986 Invariant Manifolds, Entropy and Billiards Smooth Maps with Singularities(Lecture Notes in Mathematics vol 1222) (New York: Springer) · Zbl 0658.58001 · doi:10.1007/BFb0099031
[24] Machta J 1983 Power law decay of correlations in a billiard problem J. Stat. Phys.32 555-64 · doi:10.1007/bf01008956
[25] Markarian R 2004 Billiards with polynomial decay of correlations Ergod. Theor. Dynam. Syst.24 177-97 · Zbl 1115.37037 · doi:10.1017/s0143385703000270
[26] Pesin Y B 1992 Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties Ergod. Theor. Dynam. Syst.12 123-51 · Zbl 0774.58029 · doi:10.1017/s0143385700006635
[27] Stenlund M, Young L-S and Zhang H 2013 Dispersing billiards with moving scatterers Commun. Math. Phys.322 909-55 · Zbl 1304.37024 · doi:10.1007/s00220-013-1746-6
[28] Young L-S 1998 Statistical properties of dynamical systems with some hyperbolicity Ann. Math.147 585-650 · Zbl 0945.37009 · doi:10.2307/120960
[29] Young L-S 1999 Recurrence times and rates of mixing Isr. J. Math.110 153-88 · Zbl 0983.37005 · doi:10.1007/bf02808180
[30] Young L-S 2002 What are SRB measures, and which dynamical systems have them? J. Stat. Phys.108 733-51 · Zbl 1124.37307 · doi:10.1023/A:1019762724717
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.