×

Interface dynamics in a two-phase tumor growth model. (English) Zbl 1477.35321

Summary: We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.

MSC:

35R37 Moving boundary problems for PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Ambrose, D. M., Well-posedness of two-phase Hele-Shaw flow without surface tension. European J. Appl. Math. 15 (2004), 597-607. Zbl1076.76027 MR2128613 · Zbl 1076.76027
[2] Bear, J., Dynamics of Fluids in Porous Media. Courier Corporation, 2013.
[3] Bertsch, M., Dal Passo, R., & Mimura, M., A free boundary problem arising in a simplified tumour growth model of contact inhibition. Interfaces Free Bound. 12 (2010), 235-250. Zbl1197.35296 MR2652018 · Zbl 1197.35296
[4] Bertsch, M., Gurtin, M. E., Hilhorst, D., & Peletier, L. A., On interacting populations that disperse to avoid crowding: Preservation of segregation. J. Math. Biol. 23 (1985), 1-13. Zbl0596.35074 MR821681 · Zbl 0596.35074
[5] Biccari, U., Warma, M., & Zuazua, E., Local regularity for fractional heat equations. In: Recent Advances in PDEs: Analysis, Numerics and Control. SEMA SIMAI Springer Ser. 17, Springer, Cham, 233-249, 2018. Zbl1415.35072 MR3888964 · Zbl 1415.35072
[6] Bubba, F., Perthame, B., Pouchol, C., & Schmidtchen, M., Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues. Arch. Ration. Mech. Anal. 236 (2020), 735-766. Zbl1435. 35390 MR4072681 · Zbl 1435.35390
[7] Byrne, H. M. & Chaplain, M. A. J., Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Mathematical and Computer Modelling 24 (1996), 1-17. Zbl0883.92014 INTERFACE MOTION IN A TUMOR GROWTH MODEL 303 · Zbl 0883.92014
[8] Caffarelli, L. A. & Friedman, A., Regularity of the free boundary of a gas flow in an n-dimensional porous medium. Indiana Univ. Math. J. 29 (1980), 361-391. Zbl0439.76085 MR570687 · Zbl 0439.76085
[9] Caffarelli, L. A., Vázquez, J. L., & Wolanski, N. I., Lipschitz continuity of solutions and interfaces of the N -dimensional porous medium equation. Indiana Univ. Math. J. 36 (1987), 373-401. MR891781 · Zbl 0644.35058
[10] Caffarelli, L. A. & Wolanski, N. I., C 1;˛r egularity of the free boundary for the N -dimensional porous media equation. Comm. Pure Appl. Math. 43 (1990), 885-902. Zbl0728.76103 MR1072396 · Zbl 0728.76103
[11] Carrillo, J. A., Fagioli, S., Santambrogio, F., & Schmidtchen, M., Splitting schemes and segregation in reaction cross-diffusion systems. SIAM J. Math. Anal. 50 (2018), 5695-5718. Zbl1402.35147 MR3870087 · Zbl 1402.35147
[12] Cheng, C. H. A., Coutand, D., & Shkoller, S., Global existence and decay for solutions of the Hele-Shaw flow with injection. Interfaces Free Bound. 16 (2014), 297-338. Zbl1301.35219 MR3264792 · Zbl 1301.35219
[13] Cheng, C. H. A., Granero-Belinchón, R., & Shkoller, S., Well-posedness of the Muskat problem with H 2 initial data. Adv. Math. 286 (2016), 32-104. Zbl1331.35396 MR3415681 · Zbl 1331.35396
[14] Córdoba, A., Córdoba, D., & Gancedo, F., Interface evolution: The Hele-Shaw and Muskat problems. Ann. of Math. (2) 173 (2011), 477-542. Zbl1229.35204 MR2753607 · Zbl 1229.35204
[15] Córdoba, A., Córdoba, D., & Gancedo, F., Porous media: The Muskat problem in three dimensions. Anal. PDE 6 (2013), 447-497. Zbl1273.35221 MR3071395 · Zbl 1273.35221
[16] Constantin, P., Córdoba, D., Gancedo, F., Rodríguez-Piazza, L., & Strain, R. M., On the Muskat problem: Global in time results in 2D and 3D. Amer. J. Math. 138 (2016), 1455-1494. MR3595492 · Zbl 1369.35053
[17] Constantin, P., Córdoba, D., Gancedo, F., & Strain, R. M., On the global existence for the Muskat problem. J. Eur. Math. Soc. (JEMS) 15 (2013), 201-227. Zbl1258.35002 MR2998834 · Zbl 1258.35002
[18] Córdoba, D. & Gancedo, F., Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273 (2007), 445-471. Zbl1120.76064 MR2318314 · Zbl 1120.76064
[19] Cordoba, D. & Lazar, O., Global well-posedness for the 2D stable Muskat problem in H 3=2 . arXiv:1803.07528 (2018).
[20] DiBenedetto, E. & Friedman, A., The ill-posed Hele-Shaw model and the Stefan problem for supercooled water. Trans. Amer. Math. Soc. 282 (1984), 183-204. Zbl0621.35102 MR728709 · Zbl 0621.35102
[21] Duoandikoetxea, J., Fourier Analysis. Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001. MR1800316 · Zbl 0969.42001
[22] Elliott, C. M. & Janovský, V., A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 93-107. MR611303 · Zbl 0455.76043
[23] Escher, J., Matioc, A.-V., & Matioc, B.-V., A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25 (2012), 73-92. Zbl1243.35179 MR2864377 · Zbl 1243.35179
[24] Escher, J., & Simonett, G., Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28 (1997), 1028-1047. Zbl0888.35142 MR1466667 · Zbl 0888.35142
[25] Evans, L. C., Partial Differential Equations. Second ed., Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. MR2597943 · Zbl 1194.35001
[26] Gancedo, F., García-Juárez, E., Patel, N., & Strain, R. M., On the Muskat problem with viscosity jump: Global in time results. Adv. Math. 345 (2019), 552-597. Zbl1410.35117 MR3899970 · Zbl 1410.35117
[27] Gilbarg, David & Trudinger, Neil S., Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Berlin: Springer, 2001. Zbl1042.35002 MR1814364
[28] Grafakos, L., Classical Fourier Analysis. Second ed., Graduate Texts in Mathematics 249, Springer, New York, 2008. MR2445437 · Zbl 1220.42001
[29] Gwiazda, P., Perthame, B., &Świerczewska-Gwiazda, A., A two-species hyperbolic-parabolic model of tissue growth. Comm. Partial Differential Equations 44 (2019), 1605-1618. Zbl1425.35198 MR4000848 · Zbl 1425.35198
[30] Howison, S. D., Complex variable methods in Hele-Shaw moving boundary problems. European J. Appl. Math. 3 (1992), 209-224. Zbl0759.76022 MR1182213 · Zbl 0759.76022
[31] Kim, I. C., Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168 (2003), 299-328. MR1994745 · Zbl 1044.76019
[32] Kim, I. & Zhang, Y.-P., Porous medium equation with a drift: Free boundary regularity. arXiv:1812.08770 (2018).
[33] Kim, I., Mészáros, A. R., On nonlinear cross-diffusion systems: an optimal transport approach. Calc. Var. Partial Differential Equations 57 (2018), Paper No. 79, 40. MR3795211 · Zbl 1393.35118
[34] Kim, I. & Požár, N., Porous medium equation to Hele-Shaw flow with general initial density. Trans. Amer. Math. Soc. 370 (2018), 873-909. Zbl1392.92039 MR3729490 · Zbl 1392.92039
[35] Lamberton, D.,Équations d’évolution linéaires associéesà des semi-groupes de contractions dans les espaces L p . J. Funct. Anal. 72 (1987), 252-262. Zbl0621.47039 MR886813 · Zbl 0621.47039
[36] Li, Y. Y. & Vogelius, M., Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153 (2000), 91-151. Zbl0958.35060 MR1770682 · Zbl 0958.35060
[37] Lorenzi, T., Lorz, A., & Perthame, B., On interfaces between cell populations with different mobilities. Kinet. Relat. Models 10 (2017), 299-311. Zbl1359.35204 MR3579573 · Zbl 1359.35204
[38] Majda, A. J. & Bertozzi, A. L., Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics 27, Cambridge University Press, Cambridge 2002. MR1867882 · Zbl 0983.76001
[39] Matioc, B.-V., Well-posedness and stability results for some periodic Muskat problems. J. Math. Fluid Mech. 22 (2020), Paper No. 31, 45. Zbl1440.35275 MR4108619 · Zbl 1440.35275
[40] Mellet, A., Perthame, B. & Quirós, F., A Hele-Shaw problem for tumor growth. J. Funct. Anal. 273 (2017), 3061-3093. Zbl1377.35245 MR3695889 · Zbl 1377.35245
[41] Muskat, M., Two fluid systems in porous media. the encroachment of water into an oil sand. Physics 5 (1934), 250-264. Zbl60.1388.01 · JFM 60.1388.01
[42] Perthame, B., Quirós, F., & Vázquez, J. L., The Hele-Shaw asymptotics for mechanical models of tumor growth. Arch. Ration. Mech. Anal. 212 (2014), 93-127. MR3162474 · Zbl 1293.35347
[43] Richardson, S., Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. Journal of Fluid Mechanics 56 (1972), 609-618. Zbl0256.76024 · Zbl 0256.76024
[44] Saffman, P. G. & Taylor, G., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. London Ser. A 245 (1958), 312-329 (2 plates). Zbl0086.41603 MR97227 · Zbl 0086.41603
[45] Siegel, M., Caflisch, R. E., & Howison, S., Global existence, singular solutions, and ill-posedness for the Muskat problem. Comm. Pure Appl. Math. 57 (2004), 1374-1411. Zbl1062.35089 MR2070208 · Zbl 1062.35089
[46] Temam, R., Navier-Stokes Equations. Third ed., Studies in Mathematics and its Applications 2, North-Holland Publishing Co., Amsterdam, 1984. Zbl0568.35002 MR769654 · Zbl 0568.35002
[47] Triebel, H., Theory of Function Spaces. Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010. MR3024598
[48] Vázquez, J. L., The Porous Medium Equation. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. MR2286292 · Zbl 1107.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.