×

Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation. (English) Zbl 1477.35160

Summary: We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether there is linear dispersion, i.e. whether \(2 k = 0\). If \(2 k > 0\), then a unique smooth solitary wave persists with selected wave speed under singular Kuramoto-Sivashinsky perturbation just as what happens in the KS-KdV equation. On the other hand, we show that if there is no linear dispersion, i.e. \(2 k = 0\), then any observable peaked soliton fails to persist. This case is non-typical since the related slow manifold blows up and the classical geometric singular perturbation theory is not available.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B25 Solitary waves for incompressible inviscid fluids
35C08 Soliton solutions
35B44 Blow-up in context of PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Bates, P.; Li, J.; Zhang, M., Singular fold with real noise, Discrete Contin. Dyn. Syst., Ser. B, 21, 7, 2091-2107 (2016) · Zbl 1366.37120
[2] Bressan, A.; Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183, 215-239 (2007) · Zbl 1105.76013
[3] Broer, H. W.; Kaper, T.; Krupa, M., Geometric desingularization of a cusp singularity in slow-fast systems with applications to Zeeman’s examples, J. Dyn. Differ. Equ., 25, 4, 925-958 (2013) · Zbl 1288.34051
[4] Camassa, R.; Holm, D., An integrable shallow water equation with peaked soliton, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[5] Chang, H. C.; Demekhin, E. A., Solitary wave formation and dynamics on falling films, Adv. Appl. Mech., 32, 1-58 (1996) · Zbl 0870.76025
[6] Constantin, A., Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81 (2011), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, xii+321 pp · Zbl 1266.76002
[7] Constantin, A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362 (2000) · Zbl 0944.35062
[8] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243 (1998) · Zbl 0923.76025
[9] Constantin, A.; Escher, J., Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa, 26, 303-328 (1998) · Zbl 0918.35005
[10] Constantin, A.; Escher, J., Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math., 51, 475-504 (1998) · Zbl 0934.35153
[11] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Commun. Math. Phys., 211, 45-61 (2000), 75-89 · Zbl 1002.35101
[12] Constantin, A.; Strauss, W., Stability of peakons, Commun. Pure Appl. Math., 53, 603-610 (2000) · Zbl 1049.35149
[13] Dai, H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127, 193-207 (1998) · Zbl 0910.73036
[14] Degasperis, A.; Procesi, M., Asymptotic integrability, (Degasperis, A.; Gaeta, G., Symmetry and Perturbation Theory (1999), World Scientific: World Scientific Singapore), 23-37 · Zbl 0963.35167
[15] Du, Z.; Li, J.; Li, X., The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275, 988-1007 (2018) · Zbl 1392.35223
[16] Eckhardt, J., The inverse spectral transform for the conservative Camassa-Holm flow with decaying initial data, Arch. Ration. Mech. Anal., 224, 21-52 (2017) · Zbl 1367.35121
[17] Eckhardt, J.; Kostenko, A., An isospectral problem for global conservative multi-peakon solutions of the Camassa-Holm equation, Commun. Math. Phys., 329, 893-918 (2014) · Zbl 1297.35204
[18] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31, 53-98 (1979) · Zbl 0476.34034
[19] Fuchssteiner, B.; Fokas, A., Symplectic structures, their Backland transformations and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114
[20] Gui, G.; Liu, Y.; Luo, T., Model equations and traveling wave solutions for shallow-water waves with the Coriolis effect, J. Nonlinear Sci., 29, 3, 993-1039 (2019) · Zbl 1420.35238
[21] Johnson, R., Camassa-Holm Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455, 63-82 (2002) · Zbl 1037.76006
[22] Jardon-Kojakhmetov, H.; Broer, H. W., Polynomial normal forms of constrained differential equations with three parameters, J. Differ. Equ., 257, 4, 1012-1055 (2014) · Zbl 1305.34056
[23] Jones, C. K.R. T., Geometrical Singular Perturbation Theory, Lecture Notes in Mathematics, vol. 1609 (1995), Springer: Springer New York
[24] Kraenkel, R.; Zenchuk, A., Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions, J. Phys. A, Math. Gen., 32, 4733-7747 (1999) · Zbl 0941.35094
[25] Krupa, M.; Szmolyan, P., Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 2, 286-314 (2001) · Zbl 1002.34046
[26] Krupa, M.; Szmolyan, P., Relaxation oscillation and canard explosion, J. Differ. Equ., 174, 312-368 (2001) · Zbl 0994.34032
[27] Kuehn, C., Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191 (2015), Springer: Springer Switzerland · Zbl 1335.34001
[28] Kuramoto, Y., Diffusion-induced chemical turbulence, (Haken, H., Dynamics of Synergetic Systems (1980), Springer), 134-146 · Zbl 0435.92030
[29] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 356-369 (1976)
[30] Lenells, J., Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equ., 271, 393-430 (2005) · Zbl 1082.35127
[31] Li, J.; Lu, K.; Bates, P. W., Normally hyperbolic invariant manifolds for random dynamical systems, Trans. Am. Math. Soc., 365, 5933-5966 (2013) · Zbl 1291.37093
[32] Li, J.; Lu, K.; Bates, P. W., Invariant foliations for random dynamical systems, Discrete Contin. Dyn. Syst., 34, 3639-3666 (2014) · Zbl 1351.37215
[33] Li, J.; Lu, K.; Bates, P. W., Geometric singular perturbation theory with real noise, J. Differ. Equ., 259, 5137-5167 (2015) · Zbl 1332.34099
[34] Li, Y.; Olver, P., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ., 162, 27-63 (2000) · Zbl 0958.35119
[35] Lu, N.; Zeng, C., Normally elliptic singular perturbations and persistence of homoclinic orbits, J. Differ. Equ., 250, 4124-4176 (2011) · Zbl 1227.34056
[36] McKean, H., Integrable Systems and Algebraic Curves, Global Analysis, Lecture Notes in Mathematics, vol. 755, 83-200 (1979), Springer · Zbl 0449.35080
[37] Minakov, A., Asymptotics of step-like solutions for the Camassa-Holm equation, J. Differ. Equ., 261, 6055-6098 (2016) · Zbl 1350.35065
[38] Novruzov, E.; Hagverdiyev, A., On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differ. Equ., 257, 4525-4541 (2014) · Zbl 1304.35140
[39] Ogawa, T., Travelling wave solutions to a perturbed Korteweg-de Vries equation, Hiroshima Math. J., 24, 401-422 (1994) · Zbl 0812.76015
[40] Ogawa, T.; Susuki, H., On the spectra of pulses in a nearly integrable system, SIAM J. Appl. Math., 57, 485-500 (1997) · Zbl 0873.35082
[41] Pego, R.; Schneider, G.; Uecker, H., Long time persistence of Korteweg-de Vries solitons as transient dynamics in a model of inclined film flow, Proc. R. Soc. Edinb., Sect. A, 137, 133-146 (2007) · Zbl 1174.35102
[42] Schecter, S., Exchange lemmas 2: general exchange lemma, J. Differ. Equ., 245, 2, 411-441 (2008) · Zbl 1158.34038
[43] Sivashinsky, G. I., Nonlinear analysis of hydrodynamic instability in laminar flames I. Derivations of basic equations, Acta Astronaut., 4, 1177-1206 (1977) · Zbl 0427.76047
[44] Topper, J.; Kawahara, T., Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Jpn., 44, 663-666 (1978) · Zbl 1334.76054
[45] Win, H. A., Model equation of surface waves of viscous fluid down an inclined plane, J. Math. Kyoto Univ., 33, 3, 803-824 (1993) · Zbl 0855.35116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.