×

Stochastic bifurcations of a fractional-order vibro-impact system driven by additive and multiplicative Gaussian white noises. (English) Zbl 1477.34085

It has been revealed that several natural systems are explained with differential fractional-order equations, where a fractional derivative order is utilized. As the stochastic disturbances are inevitable such as strong winds, earthquakes, and ocean waves, in recent years, stochastic differential fractional-order equations have become more and more important and stimulating to researchers due to their successful and possible applications in numerous arenas. Vibro-impact systems are used broadly in modelling machine dynamics, vibration engineering, and structural mechanics. Study of vibro-impact systems requires the investigation of mathematical models with discontinuities and shows their behaviour as intensely non-linear. The debate on the stochastic systems with both vibro-impact factors and fractional derivative element is uncommon. This paper is involved with the stochastic bifurcation of a fractional-order vibro-impact system powered by additive and multiplicative Gaussian white noises. There are two challenges to study the stationary response of the fractional vibro-impact systems under Gaussian white noises. The first one is how to deal with the discontinuity of the original system. The second one is how to get the explicit expression of the averaged drift coefficient when we utilize the stochastic averaging method. These two challenges have been solved in this paper by the non-smooth transformations and stochastic averaging method.

MSC:

34F10 Bifurcation of solutions to ordinary differential equations involving randomness
34A08 Fractional ordinary differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34A36 Discontinuous ordinary differential equations
34F05 Ordinary differential equations and systems with randomness
34C23 Bifurcation theory for ordinary differential equations

References:

[1] West, B. J., Fractional Calculus View of Complexity: Tomorrow’s Science (2016), Boca Raton, FL, USA: CRC Press, Boca Raton, FL, USA · Zbl 1330.00030
[2] Machado, J. T., And I say to myself: “what a fractional world!”, Fractional Calculus and Applied Analysis, 14, 635-654 (2011) · Zbl 1273.37002 · doi:10.2478/s13540-011-0037-1
[3] Podlubny, I., Fractional Differential Equations (1998), Cambridge, MA, USA: Academic Press, Cambridge, MA, USA · Zbl 0922.45001
[4] Li, C.; Zeng, F., Numerical Methods for Fractional Calculus (2015), Boca Raton, FL, USA: CRC Press, Boca Raton, FL, USA · Zbl 1326.65033
[5] Chen, Y.; Petras, I.; Xue, D., Fractional order control-A tutorial, Proceedings of the American Control Conference ACC’09: IEEE
[6] Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D., A review and evaluation of numerical tools for fractional calculus and fractional order controls, International Journal of Control, 90, 6, 1165-1181 (2017) · Zbl 1367.93205 · doi:10.1080/00207179.2015.1124290
[7] Rossikhin, Y. A.; Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Applied Mechanics Reviews, 50, 1, 15-67 (1997) · doi:10.1115/1.3101682
[8] Rossikhin, Y. A.; Shitikova, M. V., Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Applied Mechanics Reviews, 63, 10801 (2010) · doi:10.1115/1.4000563
[9] Chen, L.; Hu, F.; Zhu, W., Stochastic dynamics and fractional optimal control of quasi integrable Hamiltonian systems with fractional derivative damping, Fractional Calculus and Applied Analysis, 16, 1, 189-225 (2013) · Zbl 1312.49027 · doi:10.2478/s13540-013-0013-z
[10] West, B. J., Thoughts on modeling complexity, Complexity, 11, 3, 33-43 (2006) · doi:10.1002/cplx.20114
[11] Marir, S.; Chadli, M.; Bouagada, D., A novel approach of admissibility for singular linear continuous-time fractional-order systems, International Journal of Control, Automation and Systems, 15, 2, 959-964 (2017) · doi:10.1007/s12555-016-0003-0
[12] Marir, S.; Chadli, M.; Bouagada, D., New admissibility conditions for singular linear continuous-time fractional-order systems, Journal of the Franklin Institute, 354, 2, 752-766 (2017) · Zbl 1355.93039 · doi:10.1016/j.jfranklin.2016.10.022
[13] Ghezzar, M. A.; Bouagada, D.; Chadli, M., Influence of discretization step on positivity of a certain class of two-dimensional continuous-discrete fractional linear systems, IMA Journal of Mathematical Control and Information, 35, 3, 845-860 (2017) · Zbl 1402.93111 · doi:10.1093/imamci/dnx005
[14] Huang, Z. L.; Jin, X. L., Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative, Journal of Sound and Vibration, 319, 3-5, 1121-1135 (2009) · doi:10.1016/j.jsv.2008.06.026
[15] Chen, L.; Zhao, T.; Li, W.; Zhao, J., Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order \(PI^λD^{μ\) · Zbl 1349.93162 · doi:10.1007/s11071-015-2345-1
[16] Yang, Y.; Xu, W.; Jia, W.; Han, Q., Stationary response of nonlinear system with Caputo-type fractional derivative damping under Gaussian white noise excitation, Nonlinear Dynamics, 79, 1, 139-146 (2014) · doi:10.1007/s11071-014-1651-3
[17] Chen, L.; Liang, X.; Zhu, W.; Zhao, Y., Stochastic averaging technique for SDOF strongly nonlinear systems with delayed feedback fractional-order PD controller, Science China Technological Sciences, 62, 2, 287-297 (2019) · doi:10.1007/s11431-018-9326-2
[18] Liu, D.; Li, J.; Xu, Y., Principal resonance responses of SDOF systems with small fractional derivative damping under narrow-band random parametric excitation, Communications in Nonlinear Science and Numerical Simulation, 19, 10, 3642-3652 (2014) · Zbl 1473.70056 · doi:10.1016/j.cnsns.2014.03.018
[19] Xu, Y.; Li, Y.; Liu, D., A method to stochastic dynamical systems with strong nonlinearity and fractional damping, Nonlinear Dynamics, 83, 4, 2311-2321 (2016) · Zbl 1353.34067 · doi:10.1007/s11071-015-2482-6
[20] Huang, D.; Zhou, S.; Litak, G., Theoretical analysis of multi-stable energy harvesters with high-order stiffness terms, Communications in Nonlinear Science and Numerical Simulation, 69, 270-286 (2019) · Zbl 1509.74022 · doi:10.1016/j.cnsns.2018.09.025
[21] Di Matteo, A.; Kougioumtzoglou, I. A.; Pirrotta, A.; Spanos, P. D.; Di Paola, M., Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the Wiener path integral, Probabilistic Engineering Mechanics, 38, 127-135 (2014) · doi:10.1016/j.probengmech.2014.07.001
[22] Malara, G.; Spanos, P. D., Nonlinear random vibrations of plates endowed with fractional derivative elements, Probabilistic Engineering Mechanics, 54, 2-8 (2018) · doi:10.1016/j.probengmech.2017.06.002
[23] Wu, C.; Lv, S.; Long, J.; Yang, J.; Sanjuán, M. A. F., Self-similarity and adaptive aperiodic stochastic resonance in a fractional-order system, Nonlinear Dynamics, 91, 3, 1697-1711 (2018) · doi:10.1007/s11071-017-3975-2
[24] Li, W.; Chen, L.; Zhao, J.; Trisovic, N., Reliability estimation of stochastic dynamical systems with fractional order PID controller, International Journal of Structural Stability and Dynamics, 18, 6 (2018) · Zbl 1535.70099 · doi:10.1142/S0219455418500839
[25] Denoël, V., Multiple timescale spectral analysis of a linear fractional viscoelastic system under colored excitation, Probabilistic Engineering Mechanics, 53, 66-74 (2018) · doi:10.1016/j.probengmech.2018.05.003
[26] Wang, L.; Xue, L.; Sun, C.; Yue, X.; Xu, W., The response analysis of fractional-order stochastic system via generalized cell mapping method, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, 1, 13118 (2018) · Zbl 1390.34031 · doi:10.1063/1.5012931
[27] Di Matteo, A.; Spanos, P.; Pirrotta, A., Approximate survival probability determination of hysteretic systems with fractional derivative elements, Probabilistic Engineering Mechanics, 54, 138-146 (2018) · doi:10.1016/j.probengmech.2017.10.001
[28] Li, W.; Huang, D.; Zhang, M.; Trisovic, N.; Zhao, J., Bifurcation control of a generalized VDP system driven by color-noise excitation via FOPID controller, Chaos, Solitons & Fractals, 121, 30-38 (2019) · Zbl 1448.93135 · doi:10.1016/j.chaos.2019.01.026
[29] Ibrahim, R. A., Vibro-impact Dynamics: Modeling, Mapping and Applications (2009), Berlin, Germany: Springer Science & Business Media, Berlin, Germany · Zbl 1345.70001
[30] Huang, Z. L.; Liu, Z. H.; Zhu, W. Q., Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations, Journal of Sound and Vibration, 275, 1-2, 223-240 (2004) · doi:10.1016/j.jsv.2003.06.007
[31] Feng, J.; Xu, W.; Wang, R., Stochastic responses of vibro-impact duffing oscillator excited by additive Gaussian noise, Journal of Sound and Vibration, 309, 3-5, 730-738 (2008) · doi:10.1016/j.jsv.2007.07.070
[32] Feng, J.; Xu, W.; Rong, H.; Wang, R., Stochastic responses of Duffing-Van der Pol vibro-impact system under additive and multiplicative random excitations, International Journal of Non-linear Mechanics, 44, 1, 51-57 (2009) · Zbl 1203.74061 · doi:10.1016/j.ijnonlinmec.2008.08.013
[33] Namachchivaya, N. S.; Park, J. H., Stochastic dynamics of impact oscillators, Journal of Applied Mechanics, 72, 6, 862-870 (2005) · Zbl 1111.74572 · doi:10.1115/1.2041660
[34] Kumar, P.; Narayanan, S.; Gupta, S., Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator, Nonlinear Dynamics, 85, 1, 439-452 (2016) · doi:10.1007/s11071-016-2697-1
[35] Wang, L.; Ma, S.; Sun, C.; Jia, W.; Xu, W., The stochastic response of a class of impact systems calculated by a new strategy based on generalized cell mapping method, Journal of Applied Mechanics, 85, 54502 (2018) · doi:10.1115/1.4039436
[36] Chen, L.; Qian, J.; Zhu, H.; Sun, J.-q., The closed-form stationary probability distribution of the stochastically excited vibro-impact oscillators, Journal of Sound and Vibration, 439, 260-270 (2019) · doi:10.1016/j.jsv.2018.09.061
[37] Dimentberg, M. F.; Iourtchenko, D. V., Random vibrations with impacts: a review, Nonlinear Dynamics, 36, 2-4, 229-254 (2004) · Zbl 1125.70019 · doi:10.1023/b:nody.0000045510.93602.ca
[38] Zhuravlev, V., A method for analyzing vibration-impact systems by means of special functions, Mechanics of Solids, 11, 23-27 (1976)
[39] Kumar, P.; Narayanan, S.; Gupta, S., Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers, International Journal of Mechanical Sciences, 127, 103-117 (2016) · doi:10.1016/j.ijmecsci.2016.12.009
[40] Yurchenko, D.; Burlon, A.; Di Paola, M.; Failla, G.; Pirrotta, A., Approximate analytical mean-square response of an impacting stochastic system oscillator with fractional damping, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 3, 3, 30903 (2017) · doi:10.1115/1.4036701
[41] Yang, Y.; Xu, W.; Yang, G., Bifurcation analysis of a noisy vibro-impact oscillator with two kinds of fractional derivative elements, Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, 4, 43106 (2018) · Zbl 1390.34186 · doi:10.1063/1.5021040
[42] Lin, Y.-K., Probabilistic Theory of Structural Dynamics (1976), Malabar, FL. USA: Krieger Publishing Company, Malabar, FL. USA · Zbl 0359.70052
[43] Sun, J.-Q., Stochastic Dynamics and Control (2006), Amsterdam, Netherlands: Elsevier, Amsterdam, Netherlands · Zbl 1118.74003
[44] Cai, G.-Q.; Zhu, W.-Q., Elements of Stochastic Dynamics (2016), Singapore: World Scientific Publishing Company, Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.