×

On higher order Poincaré inequalities with radial derivatives and Hardy improvements on the hyperbolic space. (English) Zbl 1477.31038

Summary: In this paper we prove higher order Poincaré inequalities involving radial derivatives namely, \[ \int_{\mathbb{H}^N} |\nabla_{r,\mathbb{H}^N}^k u|^2 \, \text{d}v_{\mathbb{H}^N} \ge \bigg (\frac{N-1}{2}\bigg )^{2(k-l)} \int_{\mathbb{H}^N} |\nabla_{r,\mathbb{H}^N}^l u|^2 \, \text{d}v_{\mathbb{H}^N} \text{ for all } u\in H^k(\mathbb{H}^N), \] where underlying space is \(N\)-dimensional hyperbolic space \(\mathbb{H}^N\), \(0\le l<k\) are integers and the constant \(\big (\frac{N-1}{2}\big )^{2(k-l)}\) is sharp. Furthermore we improve the above inequalities by adding Hardy-type remainder terms and the sharpness of some constants is also discussed.

MSC:

31C12 Potential theory on Riemannian manifolds and other spaces
26D10 Inequalities involving derivatives and differential and integral operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Akutagawa, K.; Kumura, H., Geometric relative Hardy inequalities and the discrete spectrum of Schr��dinger operators on manifolds, Calc. Var. Part. Diff. Eq., 48, 67-88 (2013) · Zbl 1279.58014 · doi:10.1007/s00526-012-0542-z
[2] Barbatis, G.; Filippas, S.; Tertikas, A., A unified approach to improved \(L^p\) Hardy inequalities with best constants, Trans. Amer. Soc, 356, 2169-2196 (2004) · Zbl 1129.26019 · doi:10.1090/S0002-9947-03-03389-0
[3] Barbatis, G.; Filippas, S.; Tertikas, A., Series expansion for \(L^p\) Hardy inequalities, Indiana Univ. Math. J., 52, 171-190 (2003) · Zbl 1035.26014 · doi:10.1512/iumj.2003.52.2207
[4] Barbatis, G.; Tertikas, A., On a class of Rellich inequalities, J. Comput. Appl. Math., 194, 1, 156-172 (2006) · Zbl 1097.35039 · doi:10.1016/j.cam.2005.06.020
[5] Berchio, E.; D’Ambrosio, L.; Ganguly, D.; Grillo, G., Improved \(L^p\)-Poincaré inequalities on the hyperbolic space, Nonlinear Anal., 157, 146-166 (2017) · Zbl 1378.46022 · doi:10.1016/j.na.2017.03.016
[6] Berchio, E.; Ganguly, D., Improved higher order Poincaré inequalities on the hyperbolic space via Hardy-type remainder terms, Commun. on Pure and Appl. Analysis, 15, 1871-1892 (2016) · Zbl 1350.26025 · doi:10.3934/cpaa.2016020
[7] Berchio, E.; Ganguly, D.; Grillo, G., Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, J. Funct. Anal., 272, 1661-1703 (2017) · Zbl 1357.26027 · doi:10.1016/j.jfa.2016.11.018
[8] Berchio, E.; Ganguly, D.; Grillo, G.; Pinchover, Y., An optimal improvement for the Hardy inequality on the hyperbolic space and related manifolds, Proc. Roy. Soc. Edinburgh Sect. A., 150, 4, 1699-1736 (2020) · Zbl 1457.46043 · doi:10.1017/prm.2018.139
[9] Berchio, E., Ganguly, D., Roychowdhury, P.: On some strong Poincaré inequalities on Riemannian models and their improvements. J. Math. Anal. Appl. 490, (2020). doi:10.1016/j.jmaa.2020.124213 · Zbl 1441.35011
[10] Bozhkov, Y.; Mitidieri, E., Conformal Killing vector fields and Rellich type identities on Riemannian manifolds, I, Lecture Notes of Seminario Interdisciplinare di Matematica, 7, 65-80 (2008) · Zbl 1187.35058
[11] Bozhkov, Y.; Mitidieri, E., Conformal Killing vector fields and Rellich type identities on Riemannian manifolds, II. Mediterr. J. Math., 9, 1, 1-20 (2012) · Zbl 1241.58009 · doi:10.1007/s00009-011-0126-8
[12] Brezis, H.; Marcus, M., Hardy’s inequalities revisited, Ann. Scuola Norm. Sup. Cl. Sci. (4), 25, 217-237 (1997) · Zbl 1011.46027
[13] Brezis, H.; Vazquez, JL, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10, 443-469 (1997) · Zbl 0894.35038
[14] Carron, G., Inegalites de Hardy sur les varietes Riemanniennes non-compactes, J. Math. Pures Appl. (9), 76, 883-891 (1997) · Zbl 0886.58111 · doi:10.1016/S0021-7824(97)89976-X
[15] D’Ambrosio, L.; Dipierro, S., Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poinc. Anal. Non Lin., 31, 449-475 (2014) · Zbl 1317.46022 · doi:10.1016/j.anihpc.2013.04.004
[16] Davies, EB; Hinz, AM, Explicit constants for Rellich inequalities in \(L^p(\Omega )\), Math. Z., 227, 511-523 (1998) · Zbl 0903.58049 · doi:10.1007/PL00004389
[17] Devyver, B.; Fraas, M.; Pinchover, Y., Optimal Hardy weight for second-order elliptic operator: an answer to a problem of Agmon, J. Funct. Anal., 266, 4422-4489 (2014) · Zbl 1298.47057 · doi:10.1016/j.jfa.2014.01.017
[18] Filippas, S.; Tertikas, A., Optimizing improved Hardy inequalities, J. Funct. Anal., 192, 186-233 (2002) · Zbl 1030.26018 · doi:10.1006/jfan.2001.3900
[19] Gazzola, F.; Grunau, H.; Mitidieri, E., Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356, 2149-2168 (2004) · Zbl 1079.46021 · doi:10.1090/S0002-9947-03-03395-6
[20] Ghoussoub, N.; Moradifam, A., Bessel pairs and optimal Hardy and Hardy Rellich inequalities, Math. Ann., 349, 1-57 (2011) · Zbl 1216.35018 · doi:10.1007/s00208-010-0510-x
[21] Greene, R., Wu, W.: Function Theory of Manifolds which Possess a Pole. Springer (1979) · Zbl 0414.53043
[22] Karmakar, D.; Sandeep, K., Adams inequality on the hyperbolic space, J. Funct. Anal., 270, 1792-1817 (2016) · Zbl 1353.46026 · doi:10.1016/j.jfa.2015.11.019
[23] Kombe, I.; Ozaydin, M., Improved Hardy and Rellich inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 361, 12, 6191-6203 (2009) · Zbl 1178.26013 · doi:10.1090/S0002-9947-09-04642-X
[24] Kombe, I.; Ozaydin, M., Rellich and uncertainty principle inequalities on Riemannian manifolds, Trans. Amer. Math. Soc., 365, 10, 5035-5050 (2013) · Zbl 1282.53029 · doi:10.1090/S0002-9947-2013-05763-7
[25] Li, P.; Wang, J., Weighted Poincaré inequality and rigidity of complete manifolds, Ann. Sci. École Norm. Sup., 39, 921-982 (2006) · Zbl 1120.53018 · doi:10.1016/j.ansens.2006.11.001
[26] Mancini, G.; Sandeep, K., On a semilinear elliptic equation in \(\mathbb{R}^n\), Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), 7, 635-671 (2008) · Zbl 1179.35127
[27] Marcus, M.; Mizel, VJ; Pinchover, Y., On the best constant for Hardy’s inequality in \({\mathbb{R}}^n\), Trans. Am. Math. Soc., 350, 3237-3255 (1998) · Zbl 0917.26016 · doi:10.1090/S0002-9947-98-02122-9
[28] Maz’ya, VG, Sobolev spaces (1985), Berlin: Springer-Verlag, Berlin · Zbl 0692.46023 · doi:10.1007/978-3-662-09922-3
[29] Metafune, G.; Sobajima, M.; Spina, C., Weighted Calderón-Zygmund and Rellich inequalities in \(L^p\), Math. Ann., 361, 313-366 (2015) · Zbl 1318.26038 · doi:10.1007/s00208-014-1075-x
[30] Mitidieri, E., A simple approach to Hardy inequalities, Mat. Zametki, 67, 563-572 (2000) · Zbl 0964.26010 · doi:10.4213/mzm871
[31] Nguyen, VH, The sharp Poincaré-Sobolev type inequalities in the hyperbolic spaces \(\mathbb{H}^N\), J. Math. Anal. Appl., 462, 1570-1584 (2018) · Zbl 1396.46031 · doi:10.1016/j.jmaa.2018.02.054
[32] Ngo, QA; Nguyen, VH, Sharp constant for Poincaré-type inequalities in the hyperbolic space, Acta Math. Vietnam., 44, 3, 781-795 (2019) · Zbl 1426.26038 · doi:10.1007/s40306-018-0269-9
[33] Nguyen, V.H.: New sharp Hardy and Rellich type inequalities on Cartan-Hadamard manifolds and their improvements. Proc. Roy. Soc. Edinburgh Sect. A. (2019). doi:10.1017/prm.2019.37 · Zbl 1464.53047
[34] Petersen, P.: Riemannian Geometry, Graduate texts in Mathematics, 171. Springer.xvi, NY (1998) · Zbl 0914.53001
[35] Stein, EM; Weiss, G., Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series (1971), Princeton: Princeton University Press, Princeton · Zbl 0232.42007
[36] Tertikas, A.; Zographopoulos, NB, Best constants in the Hardy-Rellich inequalities and related improvements, Adv. Math., 209, 407-459 (2007) · Zbl 1160.26010 · doi:10.1016/j.aim.2006.05.011
[37] Yang, Q.; Su, D.; Kong, Y., Hardy inequalities on Riemannian manifolds with negative curvature, Commun. Contemp. Math., 16, 2, 1350043 (2014) · Zbl 1294.26019 · doi:10.1142/S0219199713500430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.