×

Boundary limits of monotone Sobolev functions on metric spaces. (English) Zbl 1477.30057

Summary: In this paper we are concerned with weighted boundary limits of monotone Sobolev functions in Orlicz spaces on bounded \((\eta,\psi)\)-John domains in a metric space. We also deal with Lindelöf type theorems for monotone Sobolev functions on uniform domains in a metric space.

MSC:

30L99 Analysis on metric spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] A. Björn and J. Björn: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, 17, European Mathematical Society (EMS), Zürich, 2011. · Zbl 1231.31001
[2] L. Carleson: Selected problems on exceptional sets. Van Nostrand Mathematical Studies, No. 13 D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. · Zbl 0189.10903
[3] N. DeJarnette: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean?, J. Math. Anal. Appl 423 (2015), 358-376. · Zbl 1333.46034
[4] T. Futamura: Lindelöf theorems for monotone Sobolev functions on uniform domains, Hiroshima Math. J. 34 (2004), 413-422. · Zbl 1070.31001
[5] T. Futamura and Y. Mizuta: Lindelöf theorems for monotone Sobolev functions, Ann. Acad. Sci. Fenn. Math. 28 (2003), 271-277. · Zbl 1035.31005
[6] T. Futamura and Y. Mizuta: Boundary behavior of monotone Sobolev functions on John domains in a metric space, Complex Var. Theory Appl. 50 (2005), 441-451. · Zbl 1074.31005
[7] T. Futamura and T. Shimomura: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space, J. Geom. Anal. 28 (2018), 1233-1244. · Zbl 1395.30060
[8] P. Hajł asz and P. Koskela: Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688. · Zbl 0954.46022
[9] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, New York, 1993. · Zbl 0780.31001
[10] P. Koskela, J.J. Manfredi and E. Villamor: Regularity theory and traces of \(\mathcal A\)-harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755-766. · Zbl 0849.31015
[11] H. Lebesgue: Sur le probléme de Dirichlet, Rend. Circ. Mat. Palermo 24 (1907), 371-402. · JFM 38.0392.01
[12] S. Lisini: Absolutely continuous curves in extended Wasserstein-Orlicz spaces, ESAIM: COCV. 22 (2016), 670-687. · Zbl 1348.49048
[13] J.J. Manfredi: Weakly monotone functions, J. Geom. Anal. 4 (1994), 393-402. · Zbl 0805.35013
[14] J.J. Manfredi and E. Villamor: Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), 433-444. · Zbl 0896.31002
[15] J.J. Manfredi and E. Villamor: Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), 403-422. · Zbl 0988.30015
[16] V.G. Maz’ya and S.V. Poborichi: Differentiable functions on bad domains, World Scientific, River Edge, NJ, 1997. · Zbl 0918.46033
[17] Y. Mizuta: On the boundary limits of harmonic functions with gradient in \(L^p\), Ann. Inst. Fourier (Grenoble) 34 (1984), 99-109. · Zbl 0522.31009
[18] Y. Mizuta: On the boundary limits of harmonic functions, Hiroshima Math. J. 18 (1988), 207-217. · Zbl 0664.31007
[19] Y. Mizuta: On the existence of weighted boundary limits of harmonic functions, Ann. Inst. Fourier (Grenoble) 40 (1990), 811-833. · Zbl 0715.31002
[20] Y. Mizuta: Boundary limits of polyharmonic functions in Sobolev-Orlicz spaces, Complex Variables 27 (1995), 117-131. · Zbl 0845.31002
[21] Y. Mizuta: Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 20 (1995), 315-326. · Zbl 0852.31008
[22] Y. Mizuta: Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996. · Zbl 0849.31001
[23] Y. Mizuta and T. Shimomura: Boundary limits of spherical means for BLD and monotone BLD functions in the unit ball, Ann. Acad. Sci. Fenn. Math. 24 (1999), 45-60. · Zbl 0926.31003
[24] Y. Mizuta and T. Shimomura: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), 201-223. · Zbl 0955.31002
[25] W. Orlicz: Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211. · Zbl 0003.25203
[26] M.A. Ragusa and A. Tachikawa: Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), 710-728. · Zbl 1420.35145
[27] M.A. Ragusa, A. Tachikawa and H. Takabayashi: Partial regularity of \(p(x)\)-harmonic maps, Trans. Amer. Math. Soc. 365 (2013), 3329-3353. · Zbl 1277.35092
[28] Yu.G. Reshetnyak: Space mappings with bounded distortion, Translations of Mathematical Monographs 73, American Mathematical Society, Providence, RI, 1989. · Zbl 0667.30018
[29] J. Väisälä: Uniform domains, Tohoku Math. J. 40 (1988), 101-118. · Zbl 0627.30017
[30] E. Villamor and B.Q. Li: Boundary limits for bounded quasiregular mappings, J. Geom. Anal. 19 (2009), 708-718. · Zbl 1175.30022
[31] M. Vuorinen: Conformal geometry and quasiregular mappings, Lectures Notes in Math. 1319, Springer, Berlin-Heidelberg-New York, 1988. · Zbl 0646.30025
[32] H. Wallin: On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc. 120 (1965), 510-525. · Zbl 0139.06301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.