×

Teichmüller spaces of piecewise symmetric homeomorphisms on the unit circle. (English) Zbl 1477.30019

Summary: We interpolate a new family of Teichmüller spaces \(T_{\sharp}^X\) between the universal Teichmüller space \(T\) and its little subspace \(T_0\). Each \(T_{\sharp}^X\) is defined by prescribing a subset \(X\) of the unit circle as the exceptional set of the vanishing property for \(T_0\). The inclusion relation of \(X\) induces a natural inclusion of \(T_{\sharp}^X\), and an approximation of \(T\) by an increasing sequence of \(T_{\sharp}^X\) is investigated. In this paper, we discuss the fundamental properties of \(T_{\sharp}^X\) from the viewpoint of the quasiconformal theory of Teichmüller spaces. We also consider the quotient space of \(T\) by \(T_{\sharp}^X\) as an analog of the asymptotic Teichmüller space.

MSC:

30C62 Quasiconformal mappings in the complex plane
30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

References:

[1] 10.1007/BF02391816 · Zbl 0121.06403 · doi:10.1007/BF02391816
[2] ; Ahlfors, Lectures on quasiconformal mappings. Van Nostrand Mathematical Studies, 10 (1966) · Zbl 0138.06002
[3] 10.1007/BF01446592 · Zbl 0896.30028 · doi:10.1007/BF01446592
[4] 10.1007/BF02392360 · Zbl 0072.29602 · doi:10.1007/BF02392360
[5] 10.1007/BF02897849 · Zbl 0965.30018 · doi:10.1007/BF02897849
[6] 10.1007/BF02392590 · Zbl 0615.30005 · doi:10.1007/BF02392590
[7] 10.1007/BF02788708 · Zbl 0156.30604 · doi:10.1007/BF02788708
[8] 10.1090/conm/311/05448 · doi:10.1090/conm/311/05448
[9] 10.1090/conm/355/06452 · doi:10.1090/conm/355/06452
[10] 10.1007/BF02566227 · Zbl 0504.30008 · doi:10.1007/BF02566227
[11] 10.1090/surv/076 · doi:10.1090/surv/076
[12] 10.2307/2374795 · Zbl 0778.30045 · doi:10.2307/2374795
[13] 10.1007/s11854-012-0021-7 · Zbl 1293.30045 · doi:10.1007/s11854-012-0021-7
[14] 10.1007/s10114-011-9045-7 · Zbl 1220.30064 · doi:10.1007/s10114-011-9045-7
[15] 10.1090/proc/14018 · Zbl 1404.30031 · doi:10.1090/proc/14018
[16] 10.1007/978-1-4613-8652-0 · doi:10.1007/978-1-4613-8652-0
[17] ; Matsuzaki, Handbook of group actions. Vol. I. Adv. Lect. Math. (ALM), 31, 333 (2015) · Zbl 1314.00005
[18] 10.5186/aasfm.2019.4449 · Zbl 1422.30068 · doi:10.5186/aasfm.2019.4449
[19] 10.1007/s11854-020-0095-6 · Zbl 1442.30021 · doi:10.1007/s11854-020-0095-6
[20] ; Nag, The complex analytic theory of Teichmüller spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts (1988) · Zbl 0667.30040
[21] 10.1090/bproc/47 · Zbl 1441.30065 · doi:10.1090/bproc/47
[22] ; Yanagishita, Kodai Math. J., 36, 209 (2013) · Zbl 1277.30028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.