×

Symmetry algebra in gauge theories of gravity. (English) Zbl 1476.83022

Summary: Diffeomorphisms and an internal symmetry (e.g. local Lorentz invariance) are typically regarded as the symmetries of any geometrical gravity theory, including general relativity. In the first-order formalism, diffeomorphisms can be thought of as a derived symmetry from the so-called local translations, which have improved properties. In this work, the algebra of an arbitrary internal symmetry and the local translations is obtained for a generic gauge theory of gravity, in any spacetime dimensions, and coupled to matter fields. It is shown that this algebra closes off shell suggesting that these symmetries form a larger gauge group. In addition, a mechanism to find the symmetries of theories that have nondynamical fields is proposed. It turns out that the explicit form of the local translations depend on the internal symmetry and that the algebra of local translations and the internal group still closes off shell. As an example, the unimodular Einstein-Cartan theory in four spacetime dimensions, which is only invariant under volume preserving diffeomorphisms, is studied.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
58A15 Exterior differential systems (Cartan theory)
22E43 Structure and representation of the Lorentz group

References:

[1] Witten E 1988 (2+1)-dimensional gravity as an exactly soluble system Nucl. Phys. B 311 46 · Zbl 1258.83032 · doi:10.1016/0550-3213(88)90143-5
[2] Carlip S 2003 Quantum Gravity in (2+1) Dimensions (Cambridge: Cambridge University Press)
[3] Hassaine M and Zanelli J 2016 Chern-Simons (Super)Gravity (Singapore: World Scientific) · Zbl 1342.83003 · doi:10.1142/9863
[4] Kiriushcheva N and Kuzmin June S V 2009 The Hamiltonian formulation of N-bein, Einstein-Cartan, gravity in any dimension: the progress report CAIMS * SCMAI: 30th Anniversary of the Canadian Applied and Industrial Mathematics Society London (Ontario, Canada, 10-14 June 2009)
[5] Hehl F W, Von Der Heyde P, Kerlick G D and Nester J M 1976 General relativity with spin and torsion: foundations and prospects Rev. Mod. Phys.48 393 · Zbl 1371.83017 · doi:10.1103/RevModPhys.48.393
[6] Blagojevic M 2002 Gravitation and Gauge Symmetries (Beograd: Institute of Physics) · Zbl 0980.83002 · doi:10.1887/0750307676
[7] Blagojević M and Hehl F W (ed) 2013 Gauge Theories of Gravitation (Singapore: World Scientific) · Zbl 1282.83046 · doi:10.1142/p781
[8] Obukhov Y N 2006 Poincare gauge gravity: selected topics Int. J. Geom. Methods Mod. Phys.3 95 · doi:10.1142/S021988780600103X
[9] Hehl F W, McCrea J D, Mielke E W and Ne’eman Y 1995 Metric affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance Phys. Rep.258 1 · doi:10.1016/0370-1573(94)00111-F
[10] Nakahara M 2016 Geometry, Topology and Physics (London: Taylor and Francis)
[11] Kibble T W B 1961 Lorentz invariance and the gravitational field J. Math. Phys.2 212 · Zbl 0095.22903 · doi:10.1063/1.1703702
[12] Sciama D W 1964 The physical structure of general relativity Rev. Mod. Phys.36 463 · doi:10.1103/RevModPhys.36.463
[13] Kiriushcheva N and Kuzmin S V 2010 Translational invariance of the Einstein-Cartan action in any dimension Gen. Relativ. Gravit.42 2613 · Zbl 1204.83070 · doi:10.1007/s10714-010-1003-7
[14] Blagojević M, Cvetković B, Miskovic O and Olea R 2013 Holography in 3D AdS gravity with torsion J. High Energy Phys.JHEP05(2013) 103 · Zbl 1342.83335 · doi:10.1007/JHEP05(2013)103
[15] Cvetković B, Miskovic O and Simić D 2017 Holography in Lovelock Chern-Simons AdS gravity Phys. Rev. D 96 044027 · doi:10.1103/PhysRevD.96.044027
[16] Freedman D Z and Van Proeyen A 2012 Supergravity (Cambridge: Cambridge University Press) · Zbl 1245.83001 · doi:10.1017/CBO9781139026833
[17] Montesinos M, González D, Celada M and Díaz B 2017 Reformulation of the symmetries of first-order general relativity Class. Quantum Grav.34 205002 · Zbl 1380.83025 · doi:10.1088/1361-6382/aa89f3
[18] Montesinos M, González D and Celada M 2018 The gauge symmetries of first-order general relativity with matter fields Class. Quantum Grav.35 205005 · Zbl 1431.83009 · doi:10.1088/1361-6382/aae10d
[19] Montesinos M, Romero R and Díaz B 2018 Symmetries of first-order Lovelock gravity Class. Quantum Grav.35 235015 · Zbl 1431.83141 · doi:10.1088/1361-6382/aaea21
[20] Bonder Y and Corral C 2018 Is there any symmetry left in gravity theories with explicit Lorentz violation? Symmetry10 433 · doi:10.3390/sym10100433
[21] Einstein A 1919 Spielen gravitationsfelder im aufbau der materiellen elementarteilchen eine wesentliche rolle? Sitzungsber. Preuss. Akad. Wiss. Berl.1919 349
[22] Anderson J L and Finkelstein D 1971 Cosmological constant and fundamental length Am. J. Phys.39 901 · doi:10.1119/1.1986321
[23] van der Bij J J, van Dam H and Ng Y J 1982 The exchange of massless spin two particles Physica116A 307 · doi:10.1016/0378-4371(82)90247-3
[24] Buchmuller W and Dragon N 1988 Einstein gravity from restricted coordinate invariance Phys. Lett. B 207 292 · doi:10.1016/0370-2693(88)90577-1
[25] Unruh W G 1989 A unimodular theory of canonical quantum gravity Phys. Rev. D 40 1048 · doi:10.1103/PhysRevD.40.1048
[26] Henneaux M and Teitelboim C 1989 The cosmological constant and general covariance Phys. Lett. B 222 195 · doi:10.1016/0370-2693(89)91251-3
[27] Ng Y J and van Dam H 1991 Unimodular theory of gravity and the cosmological constant J. Math. Phys.32 1337 · Zbl 0729.53501 · doi:10.1063/1.529283
[28] Finkelstein D R, Galiautdinov A A and Baugh J E 2001 Unimodular relativity and cosmological constant J. Math. Phys.42 340 · Zbl 1063.83572 · doi:10.1063/1.1328077
[29] Ng Y J and Van Dam H 2001 A small but nonzero cosmological constant Int. J. Mod. Phys. D 10 49 · Zbl 1155.83367 · doi:10.1142/S0218271801000627
[30] Ellis G F R, van Elst H, Murugan J and Uzan J P 2011 On the trace-free Einstein equations as a viable alternative to general relativity Class. Quantum Grav.28 225007 · Zbl 1230.83077 · doi:10.1088/0264-9381/28/22/225007
[31] Josset T, Perez A and Sudarsky D 2017 Dark energy from violation of energy conservation Phys. Rev. Lett.118 021102 · doi:10.1103/PhysRevLett.118.021102
[32] Bonder Y and Corral C 2018 Unimodular Einstein-Cartan gravity: dynamics and conservation laws Phys. Rev. D 97 084001 · doi:10.1103/PhysRevD.97.084001
[33] Bluhm R and Kostelecký V A 2005 Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity Phys. Rev. D 71 065008 · doi:10.1103/PhysRevD.71.065008
[34] Bluhm R, Fung S H and Kostelecký V A 2008 Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity Phys. Rev. D 77 065020 · doi:10.1103/PhysRevD.77.065020
[35] Kostelecký V A and Mewes M 2018 Lorentz and diffeomorphism violations in linearized gravity Phys. Lett. B 779 136 · Zbl 1383.83012 · doi:10.1016/j.physletb.2018.01.082
[36] Coleman S R and Mandula J 1967 All possible symmetries of the S matrix Phys. Rev.159 1251 · Zbl 0168.23702 · doi:10.1103/PhysRev.159.1251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.