×

Stability and multi-pulse jumping chaotic vibrations of a rotor-active magnetic bearing system with 16-pole legs under mechanical-electric-electromagnetic excitations. (English) Zbl 1476.74059

Summary: The stability and Shilnikov-type multi-pulse jumping chaotic vibrations are investigated for a nonlinear rotor-active magnetic bearing (AMB) system with the time varying stiffness and 16-pole legs under the mechanical-electric-electromagnetic excitations. The ordinary differential governing equation of motion for the rotor-AMB system is given by a two-degree-of-freedom nonlinear dynamical system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equations of the rotor-AMB system are obtained by using the method of multiple scales under the cases of \(1:1\) internal resonance, primary parametric resonance and 1/2 subharmonic resonance. Some coordinate transformations are employed to find the type and number of the equilibrium points for the averaged equations. Using the global perturbation method developed by G. Kovačič and S. Wiggins [Physica D 57, No. 1–2, 185–225 (1992; Zbl 0755.35118)], the explicit sufficient conditions near the resonance are obtained for the existence of the Shilnikov-type multi-pulse jumping homoclinic orbits and chaotic vibrations. This implies that the Shilnikov-type multi-pulse jumping chaotic vibrations may occur for the rotor-AMB system in the sense of Smale horseshoes. Numerical simulations are presented to verify the analytical predictions by using the fourth-order Runge-Kutta method. The Shilnikov-type multi-pulse jumping chaotic vibrations can exist in the rotor-AMB system with the time varying stiffness and 16-pole legs under the mechanical-electric-magnetic excitations.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74H65 Chaotic behavior of solutions to dynamical problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics

Citations:

Zbl 0755.35118
Full Text: DOI

References:

[1] Amer, Y. A.; Hegazy, U. H., Resonance behavior of a rotor-active magnetic bearing with time-varying stiffness, Chaos, Solit. Fractals, 34, 1328-1345 (2007)
[2] An, F. X.; Chen, F. Q., Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads, Nonlinear Dynam., 89, 1753-1778 (2017) · Zbl 1375.37065
[3] An, F. X.; Chen, F. Q., Multi-pulse orbits and chaotic dynamics of an aero-elastic FGP plate under parametric and primary excitations, International Journal Of Bifurcation And Chaos, 27, 1750050 (2017) · Zbl 1366.74038
[4] Camassa, R.; Kovacic, G.; Tin, S. K., A Melnikov method for homoclinic orbits with many pulses, Arch. Ration. Mech. Anal., 143, 105-193 (1998) · Zbl 0967.37037
[5] Cao, D. X.; Zhang, W., Global bifurcations and chaotic dynamics for a string-beam coupled system, Chaos, Solit. Fractals, 37, 858-875 (2008) · Zbl 1163.74025
[6] Chinta, M.; Palazzolo, A. B., Stability and bifurcation of rotor motion in a magnetic bearing, J. Sound Vib., 214, 793-803 (1998)
[7] Dagnaes-Hansen, N. A.; Santos, I. F., Magnetically suspended flywheel in gimbal mount-Nonlinear modelling and simulation, J. Sound Vib., 432, p327-350 (2018)
[8] Ghazavi, M. R.; Sun, Q., Bifurcation onset delay in magnetic bearing systems by time varying stiffness, Mech. Syst. Signal Process., 90, 97-109 (2017)
[9] Huangfu, Y. G.; Chen, F. Q., Single-pulse chaotic dynamics of functionally graded materials plate, Acta Mech. Sin., 29, 593-601 (2013) · Zbl 1346.74112
[10] Ji, J. C., Dynamics of a Jeffcott rotor-magnetic bearing system with time delays, Int. J. Non Lin. Mech., 38, 1387-1401 (2003) · Zbl 1348.93031
[11] Ji, J. C., Stability and Hopf bifurcation of a magnetic bearing system with time delays, J. Sound Vib., 259, 854-856 (2003) · Zbl 1237.93118
[12] Ji, J. C.; Hansen, C. H., Nonlinear oscillations of a rotor in active magnetic bearings, J. Sound Vib., 240, 599-612 (2001)
[13] Ji, J. C.; Leung, A. Y.T., Non-linear oscillations of a rotor-magnetic bearing system under superharmonic resonance conditions, Int. J. Non Lin. Mech., 38, 829-835 (2003) · Zbl 1346.74045
[14] Ji, J. C.; Yu, L.; Leung, A. Y.T., Bifurcation behavior of a rotor supported by active magnetic bearings, J. Sound Vib., 235, 133-151 (2000)
[15] Kovacic, G., Dissipative dynamics of orbits homoclinic to a resonance band, Phys. Lett., 167, 143-150 (1992)
[16] Kovacic, G.; Wettergren, T. A., Homoclinic orbits in the dynamics of resonantly driven coupled pendula, Z. Angew. Math. Phys., 47, 221-264 (1996) · Zbl 0848.70015
[17] Kovacic, G.; Wiggins, S., Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation, Phys. Nonlinear Phenom., 57, 185-225 (1992) · Zbl 0755.35118
[18] Li, W.; Xu, P. C., The existence of Silnikov’s orbit in four-dimensional duffing’s systems, Acta Math. Appl. Sin., 19, 677-690 (2003) · Zbl 1106.34028
[19] Li, S. B.; Zhang, W., Global bifurcations and multi-pulse chaotic dynamics of rectangular thin plate with one-to-one internal resonance, Appl. Math. Mech., 33, 1115-1128 (2012) · Zbl 1266.37049
[20] Li, J.; Tian, Y.; Zhang, W.; Miao, S. F., Bifurcation of multiple limit cycles for a rotor- active magnetic bearings system with time-varying stiffness, International Journal of Bifurcation and Chaos, 18, 755-778 (2008) · Zbl 1147.37349
[21] Li, J.; Tian, Y.; Zhang, W., Investigation of relation between singular points and number of limit cycles for a rotor-AMB system, Chaos, Solit. Fractals, 39, 1627-1640 (2009) · Zbl 1197.93119
[22] Li, S. B.; Zhang, W.; Hao, Y. X., Multi-pulse chaotic dynamics of a functionally graded material rectangular plate with one-to-one internal resonance, Int. J. Nonlinear Sci. Numer. Stimul., 11, 351-362 (2010)
[23] Nayfeh, A. H.; Mook, D. T., Nonlinear Oscillations (1979), Wiley-Interscience: Wiley-Interscience New York · Zbl 0418.70001
[24] Sun, M.; Zhang, W.; Chen, J. E., Subharmonic Melnikov method of six-dimensional nonlinear systems and application to a laminated composite piezoelectric rectangular plate, Nonlinear Dynam., 75, 289-310 (2014) · Zbl 1281.34016
[25] Sun, M.; Zhang, W.; Chen, J. E.; Yao, M. H., Subharmonic Melnikov method of four-dimensional non-autonomous systems and application to a rectangular thin plate, Nonlinear Dynam., 82, 643-662 (2015) · Zbl 1348.37028
[26] Sun, M.; Zhang, W.; Chen, J. E.; Yao, M. H., Subharmonic Melnikov theory for degenerate resonance systems and its application, Nonlinear Dynam., 89, 1173-1186 (2017) · Zbl 1384.74027
[27] Wang, Y.; Li, F. M.; Shu, H. S., Nonlocal nonlinear chaotic and homoclinic analysis of double layered forced viscoelastic nanoplates, Mech. Syst. Signal Process., 122, 537-554 (2019)
[28] Wiggins, S., Global Bifurcations of Chaos-Analytical Methods (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0661.58001
[29] Wu, R. Q.; Zhang, W.; Yao, M. H., Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness, Mech. Syst. Signal Process., 100, p113-134 (2018)
[30] Yao, M. H.; Zhang, W., Multipulse heteroclinic orbits and chaotic dynamics of the laminated composite piezoelectric rectangular plate, Discrete Dynam Nat. Soc., 6 (2013), ID 958219-27 · Zbl 1417.37135
[31] Yao, M. H.; Zhang, W., Multi-pulse chaotic motions of high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate, Meccanica, 49, 365-392 (2014) · Zbl 1383.74062
[32] Yao, M. H.; Zhang, W.; Zu, J. W., Multi-pulse Chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt, J. Sound Vib., 331, 2624-2653 (2012)
[33] Yao, M. H.; Zhang, W.; Zu, J. W., Multi-pulse heteroclinic orbits and chaotic motions in parametrically excited viscoelastic moving belts, International Journal of Bifurcation and Chaos, 23, 1350001-1350020 (2013) · Zbl 1270.34144
[34] Yu, W. Q.; Chen, F. Q., Global bifurcations of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation, Nonlinear Dynam., 59, 129-141 (2010) · Zbl 1183.74115
[35] Zhang, W., Global and chaotic dynamics for a parametrically excited thin plate, J. Sound Vib., 239, 1013-1036 (2001)
[36] Zhang, D. M.; Chen, F. Q., Global bifurcations and single-pulse homoclinic orbits of a plate subjected to the transverse and in-plane excitations, Math. Methods Appl. Sci., 40, 4338-4349 (2017) · Zbl 1371.37099
[37] Zhang, L.; Chen, F. Q., Global bifurcations of symmetric cross-ply composite laminated plates with 1:2 internal resonance, J. Appl. Math. Mech., 98, 474-490 (2017) · Zbl 07776837
[38] Zhang, W.; Hao, W. L., Multi-pulse chaotic dynamics of six dimensional non-autonomous nonlinear system for a composite laminated piezoelectric rectangular plate, Nonlinear Dynam., 73, 1005-1033 (2013) · Zbl 1281.93051
[39] Zhang, W.; Li, S. B., Resonant chaotic motions of a buckled rectangular thin plate with parametrically and externally excitations, Nonlinear Dynam., 62, 673-686 (2010) · Zbl 1209.74025
[40] Zhang, W.; Zhan, X. P., Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness, Nonlinear Dynam., 41, 331-359 (2005) · Zbl 1142.70325
[41] Zhang, J. H.; Zhang, W., Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate, Acta Mech., 223, 1047-1066 (2012) · Zbl 1341.74116
[42] Zhang, J. H.; Zhang, W., Multi-pulse chaotic dynamics for non-autonomous nonlinear systems and application to a FGM plate, International Journal of Bifurcation and Chaos, 24, 1450068 (2014) · Zbl 1296.34129
[43] Zhang, W.; Zu, Jean W., Transient and steady nonlinear responses for a rotor-active magnetic bearings system with time-varying stiffness, Chaos, Solit. Fractals, 38, 1152-1167 (2008)
[44] Zhang, W.; Yao, M. H.; Zhan, X. P., Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness, Chaos, Solit. Fractals, 27, 175-186 (2006) · Zbl 1140.70477
[45] Zhang, W.; Zu, J. W.; Wang, F. X., Global bifurcations and chaos for a rotor-active magnetic bearing system with time-varying stiffness, Chaos, Solit. Fractals, 35, 586-608 (2008) · Zbl 1210.70021
[46] Zhang, W.; Yao, M. H.; Zhang, J. H., Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam, J. Sound Vib., 319, 541-569 (2009)
[47] Zhang, W.; Zhang, J. H.; Yao, M. H.; Yao, Z. G., Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a laminated composite piezoelectric rectangular plate, Acta Mech., 211, 23-24 (2010) · Zbl 1397.74098
[48] Zhang, W.; Zhang, J. H.; Yao, M. H., The extended Melnikov method for non-autonomous nonlinear dynamical systems and application to multi-pulse chaotic dynamics of a buckled thin plate, Nonlinear Anal. R. World Appl., 11, 1442-1457 (2010) · Zbl 1190.37038
[49] Zhang, W.; Gao, M. J.; Yao, M. H., Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt, Int. J. Mod. Phys. B, 25, 2299-2322 (2011) · Zbl 1333.74047
[50] Zhang, W.; Huang, Y. T.; Yao, M. H., Multi-pulse homoclinic orbits and chaotic dynamics of a parametrically excited nonlinear nano-oscillator with coupled cubic nonlinearities, Sci. China Phys. Mech. Astron., 57, 1098-1110 (2014)
[51] Zhang, W.; Zheng, Y.; Liu, T.; Guo, X. Y., Multi-pulse jumping double-parameter chaotic dynamics of eccentric rotating ring truss antenna under combined parametric and external excitations, Nonlinear Dynam., 98, 761-800 (2019)
[52] Zhang, W.; Wu, R. Q.; Siriguleng, B., Nonlinear vibrations of a rotor-active magnetic bearing system with 16-pole legs and two degrees of freedom, Shock Vib., 5282904, 2020 (2020)
[53] Zhao, Y. L.; Yang, G. J.; Liu, X. N.; Shi, Z. G.; Zhao, L., Research on dynamics and experiments about auxiliary bearings for the helium circulator of the 10 MW high temperature gas-cooled reactor, Ann. Nucl. Energy, 95, p176-187 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.