×

Spectral mimetic least-squares methods on curvilinear grids. (English) Zbl 1476.65316

Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 11th international conference, LSSC 2017, Sozopol, Bulgaria, June 5–9, 2017. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 10665, 111-118 (2018).
Summary: We present a spectral mimetic least-squares method on curvilinear grids, which conserves important invariants. The method is developed using differential forms where the topological part and the constitutive part have been separated. It is shown that the topological part is solved exactly, independent of the order of the spectral expansion. The method is applied to a model convection-diffusion problem, where we show that conservation of a potential is satisfied up to machine precision. The convective term is represented using the Lie derivative, by means of Cartans homotopy formula. The spectral mimetic least-squares method is compared to a standard spectral least-squares method. It is shown that both schemes lead to spectral convergence.
For the entire collection see [Zbl 1435.65014].

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bochev, P., Gunzburger, M.: On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles. SIAM J. Numer. Anal. 43(1), 340-362 (2005). https://doi.org/10.1137/S003614290443353X · Zbl 1128.76031 · doi:10.1137/S003614290443353X
[2] Bochev, P.B., Hyman, J.M.: Principles of mimetic discretizations of differential operators. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol. 142, pp. 89-119. Springer, New York (2006). https://doi.org/10.1007/0-387-38034-5_5 · Zbl 1110.65103 · doi:10.1007/0-387-38034-5_5
[3] Burke, W.L.: Applied Differential Geometry. Cambridge University Press, Cambridge (1985) · Zbl 0572.53043 · doi:10.1017/CBO9781139171786
[4] Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete Exterior Calculus. ArXiv Mathematics e-prints, August 2005
[5] Gerritsma, M.: Edge functions for spectral element methods. In: Hesthaven, J., Rønquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations, vol. 76, pp. 199-207. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15337-2_17 · Zbl 1216.65168 · doi:10.1007/978-3-642-15337-2_17
[6] Gerritsma, M., Bochev, P.: A spectral mimetic least-squares method for the stokes equations with no-slip boundary condition. Comput. Math. Appl. 71(11), 2285-2300 (2016) · Zbl 1443.65389 · doi:10.1016/j.camwa.2016.01.033
[7] Hsieh, P.W., Yang, S.Y.: On efficient least-squares finite element methods for convection-dominated problems. Comput. Methods Appl. Mech. Eng. 199(1), 183-196 (2009) · Zbl 1231.76149 · doi:10.1016/j.cma.2009.09.029
[8] Jiang, B.: The Least-Squares Finite Element Method: Theory and Applications in Computational Fluide Dynamics and Electromagnetics. Scientific Computation. Springer, New York (1998). http://opac.inria.fr/record=b1094463 · Zbl 0904.76003 · doi:10.1007/978-3-662-03740-9
[9] Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005) · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[10] Kreeft, J., Palha, A., Gerritsma, M.: Mimetic framework on curvilinear quadrilaterals of arbitrary order. ArXiv e-prints, November 2011 · Zbl 1216.65166
[11] Lazarov, R., Tobiska, L., Vassilevski, P.: Streamline-diffusion least-squares mixed finite element methods for convection-diffusion problems. East-West J. Numer. Math 5(4), 249-264 (1997) · Zbl 0895.65049
[12] Mattiussi, C.: A reference discretization strategy for the numerical solution of physical field problems. In: Hawkes, P.W. (ed.) Electron Microscopy and Holography, Advances in Imaging and Electron Physics, vol. 121, pp. 143-279. Elsevier (2002). http://www.sciencedirect.com/science/article/pii/S1076567002800271
[13] McInerney, A.: First Steps in Differential Geometry: Riemannian, Contact, Symplectic. Undergraduate Texts in Mathematics, 1st edn. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7732-7 · Zbl 1283.53001 · doi:10.1007/978-1-4614-7732-7
[14] Proot, M.M.J., Gerritsma, M.: A least-squares spectral element formulation for the stokes problem. J. Sci. Comput. 17 (2002) · Zbl 1036.76046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.