×

Additive schemes based domain decomposition algorithm for solving singularly perturbed parabolic reaction-diffusion systems. (English) Zbl 1476.65227

Summary: In this paper, we examine a 1D parabolic coupled system of singularly perturbed reaction-diffusion problems in which perturbation parameters can be of distinct magnitude. To solve this system numerically we develop additive (or splitting) schemes based domain decomposition algorithm of Schwarz waveform relaxation type. On each subdomain we consider two additive schemes on a uniform mesh in time and the standard central difference scheme on a uniform mesh in space. We provide convergence analysis of the algorithm using some auxiliary problems and the algorithm is shown to be uniformly convergent. The additive schemes make the computation more efficient as they decouple the components of the approximate solution at each time level. Numerical results for two test problems are given in support of the theoretical convergence result and as well as to illustrate the efficiency of the additive schemes.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Boglaev, I., Domain decomposition in boundary layers for singularly perturbed problems, Appl Numer Math, 34, 145-166 (2000) · Zbl 0952.65071 · doi:10.1016/S0168-9274(99)00124-5
[2] Boglaev, I., Domain decomposition for a parabolic convection-diffusion problem, Numer Methods Partial Diff Equations, 22, 1361-1378 (2006) · Zbl 1110.65090 · doi:10.1002/num.20161
[3] Clavero, C.; Gracia, JL, Uniformly convergent additive finite difference schemes for singularly perturbed parabolic reaction-diffusion systems, Comput Math Appl, 67, 3, 655-670 (2014) · Zbl 1350.65086 · doi:10.1016/j.camwa.2013.12.009
[4] Daoud, DS, Overlapping Schwarz waveform relaxation method for the solution of the forward-backward heat equation, J Comput Appl Math, 208, 2, 380-390 (2007) · Zbl 1132.65090 · doi:10.1016/j.cam.2006.10.022
[5] Dehghan, M.; Shakeri, F., The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Physica Scripta, 78, 065004 (2008) · Zbl 1159.78319 · doi:10.1088/0031-8949/78/06/065004
[6] Farrell, PA; Hegarty, AF; Miller, JJH; O’Riordan, E.; Shishkin, GI, Robust computational techniques for boundary layers (2000), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 0964.65083 · doi:10.1201/9781482285727
[7] Franklin, V.; Paramasivam, M.; Miller, JJH; Valarmathi, S., Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear parabolic system, Int J Numer Anal Model, 10, 178-202 (2013) · Zbl 1279.65104
[8] Gracia, JL; Lisbona, FL, A uniformly convergent scheme for a system of reaction-diffusion equations, J Comput Appl Math, 206, 1-16 (2007) · Zbl 1119.65079 · doi:10.1016/j.cam.2006.06.005
[9] Kamranian, M.; Dehghan, M.; Tatari, M., An image denoising approach based on a meshfree method and the domain decomposition technique, Eng Anal Boundary Elements, 39, 101-110 (2014) · Zbl 1297.65113 · doi:10.1016/j.enganabound.2013.11.003
[10] Kumar, S.; Rao, SCS, A robust overlapping Schwarz domain decomposition algorithm for time-dependent singularly perturbed reaction-diffusion problems, J Comput Appl Math, 261, 127-138 (2014) · Zbl 1280.65105 · doi:10.1016/j.cam.2013.10.053
[11] Kumar, S.; Singh, J.; Kumar, M., A robust domain decomposition method for singularly perturbed parabolic reaction-diffusion systems, J Math Chem, 57, 5, 1557-1578 (2019) · Zbl 1415.65218 · doi:10.1007/s10910-019-01026-z
[12] Ladyzhenskaya OA, Solonnikov VA, Ural \(\acute{t}\) eseva NN (1968) Linear and quasilinear equation of parabolic type: translations of mathematical monographs. American Mathematical Society, USA · Zbl 0174.15403
[13] Madden, N.; Stynes, M., A uniformly convergent numerical method for a coupled system of two singularly perturbed linear reaction-diffusion problems, IMA J Numer Anal, 23, 627-644 (2003) · Zbl 1048.65076 · doi:10.1093/imanum/23.4.627
[14] Miller, JJH; O’Riordan, E.; Shishkin, GI, Fitted numerical methods for singular perturbation problems (1996), Singapore: World Scientific, Singapore · Zbl 0915.65097 · doi:10.1142/2933
[15] Munyakazi, JB, A uniformly convergent nonstandard finite difference scheme for a system of convection-diffusion equations, Comput Appl Math, 34, 1153-1165 (2015) · Zbl 1326.65094 · doi:10.1007/s40314-014-0171-6
[16] Munyakazi, JB; Patidar, KC, A new fitted operator finite difference method to solve systems of evolutionary reaction-diffusion equations, Quaestiones Math, 38, 121-138 (2015) · Zbl 1426.65128 · doi:10.2989/16073606.2014.981708
[17] Podila, PC; Kumar, K., A new stable finite difference scheme and its convergence for time-delayed singularly perturbed parabolic PDEs, Comput Appl Math, 39, 140 (2020) · Zbl 1449.65198 · doi:10.1007/s40314-020-01170-2
[18] Quarternoni, A.; Valli, A., Domain decomposition methods for partial differential equations. Numerical mathematics and scientific computation (1999), New York: Oxford University Press, New York · Zbl 0931.65118
[19] Ramos, H.; Vigo-Aguiar, J., A new algorithm appropriate for solving singular and singularly perturbed autonomous initial-value problems, Int J Comput Math, 85, 3-4, 603-611 (2008) · Zbl 1138.65054 · doi:10.1080/00207160701199773
[20] Ramos, H.; Vigo-Aguiar, J.; Natesan, S.; Garcia-Rubio, R.; Queiruga, M., Numerical solution of nonlinear singularly perturbed problems on nonuniform meshes by using a non-standard algorithm, J Math Chem, 48, 1, 38-54 (2010) · Zbl 1304.65180 · doi:10.1007/s10910-009-9625-2
[21] Samarskii, AA; Vabishchevich, PN, Computational heat transfer: the finite difference methodology (1995), New York: Wiley, New York
[22] Shishkin, GI, Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations, Comput Math Math Phys, 35, 429-446 (1995) · Zbl 0852.65071
[23] Singh, J.; Kumar, S.; Kumar, M., A domain decomposition method for solving singularly perturbed parabolic reaction-diffusion problems with time delay, Numer Methods Partial Diff Equations, 34, 5, 1849-1866 (2018) · Zbl 1407.65176 · doi:10.1002/num.22256
[24] Sumit, Kumar S.; Kuldeep, Kumar M., A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem, Comput Appl Math, 39, 209 (2020) · Zbl 1463.65249 · doi:10.1007/s40314-020-01236-1
[25] Toselli, A.; Widlund, O., Domain decomposition methods-algorithms and theory, Springer series in computational mathematics (2010), New York: Springer, New York · Zbl 1069.65138
[26] Vabishchevich, PN, Additive schemes for certain operator-differential equations, Comput Math Math Phys, 50, 2033-2043 (2010) · Zbl 1224.35328 · doi:10.1134/S0965542510120067
[27] Vigo-Aguiar, J.; Natesan, S., A parallel boundary value technique for singularly perturbed two-point boundary value problems, J Supercomput, 27, 195-206 (2004) · Zbl 1070.65066 · doi:10.1023/B:SUPE.0000009322.23950.53
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.