×

Robust higher order finite difference scheme for singularly perturbed turning point problem with two outflow boundary layers. (English) Zbl 1476.65148

Summary: In this paper, a parameter-uniform fitted mesh finite difference scheme is constructed and analyzed for a class of singularly perturbed interior turning point problems. The solution to this class of turning point problem possesses two outflow exponential boundary layers. Parameter-explicit theoretical bounds on the analytical solution derivatives are given, which are used in the error analysis of the proposed scheme. A hybrid finite difference scheme discretizes the problem comprising of midpoint-upwind and central difference operator on an appropriate piecewise-uniform fitted mesh. An error analysis has been carried out for the proposed scheme by splitting the solution into regular and singular components, and the method has been shown to be second-order uniformly convergent except for a logarithmic factor with respect to the singular perturbation parameter. Some relevant numerical examples are also illustrated to verify the theoretical aspects computationally. Numerical experiments show that the proposed method gives competitive results compared to those of other methods available in the literature.

MSC:

65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations

References:

[1] Abrahamsson, L., A priori estimates for solutions of singular perturbations with a turning point, Stud Appl Math, 56, 51-69 (1977) · Zbl 0355.34048 · doi:10.1002/sapm197756151
[2] Ackerberg, RC; O’Malley, RE, Boundary layer problems exhibiting resonance, Stud Appl Math, 49, 277-295 (1970) · Zbl 0198.12901 · doi:10.1002/sapm1970493277
[3] Batchelor, GK, An introduction to fluid dynamics (1988), Cambridge: Cambridge University Press, Cambridge
[4] Becher, S.; Roos, HG, Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers, J Comput Appl Math, 290, 334-351 (2015) · Zbl 1321.65120 · doi:10.1016/j.cam.2015.05.022
[5] Berger, A.; Han, H.; Kellog, R., A priori estimates and analysis of a numerical method for a turning point problem, Math Comp, 42, 465-492 (1984) · Zbl 0542.34050 · doi:10.1090/S0025-5718-1984-0736447-2
[6] Dubey, RK; Gupta, V., A mesh refinement algorithm for singularly perturbed boundary and interior layer problems, Int J Comput Methods, 17, 7, 1950024 (2020) · Zbl 07336560 · doi:10.1142/S0219876219500245
[7] Farrell, PA, Sufficient conditiond for the uniform convergence of a difference scheme for a singularly perturbed turning point problem, SIAM J Numer Anal, 25, 618-643 (1998) · Zbl 0646.65068 · doi:10.1137/0725038
[8] Jingde, D., Singularly perturbed boundary value problems for linear equations with turning points, J Math Anal Appl, 155, 322-337 (1991) · Zbl 0727.34052 · doi:10.1016/0022-247X(91)90003-I
[9] Kadalbajoo, MK; Gupta, V., A parameter uniform B-spline collocation method for solving singularly perturbed turning point problem having twin boundary layers, Int J Comput Math, 87, 3218-3235 (2010) · Zbl 1236.65092 · doi:10.1080/00207160902980492
[10] Kadalbajoo, MK; Patidar, KC, Variable mesh spline approximation method for solving singularly perturbed turning point problems having boundary layer(s), Comp Math Appl, 42, 1439-1453 (2001) · Zbl 1003.65085 · doi:10.1016/S0898-1221(01)00253-X
[11] Kadalbajoo, MK; Arora, P.; Gupta, V., Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comp Math Appl, 61, 15951607 (2011) · Zbl 1217.65156 · doi:10.1016/j.camwa.2011.01.028
[12] Kellog, RB; Tsan, A., Analysis of some difference approximations for a singular perturbation problem without turning points, Math Comp, 32, 1025-1039 (1978) · Zbl 0418.65040 · doi:10.1090/S0025-5718-1978-0483484-9
[13] Launder, BE; Spalding, B., Mathematical models of turbulence (1972), New York: Academic Press, New York · Zbl 0288.76027
[14] Lin BT (2010) Layer-adapted meshes for reaction-convection-diffusion problems. Lecture notes in mathematics. Springer, Berlin, Heidelberg · Zbl 1202.65120
[15] Mbayi, CK; Munyakazi, JB; Patidar, KC, A robust fitted numerical method for singularly perturbed turning point problems whose solution exhibits an interior layer, Quaest Math, 43, 1, 1-24 (2020) · Zbl 1486.65077 · doi:10.2989/16073606.2018.1523811
[16] Munyakazi, JB; Patidar, KC, Performance of Richardson extrapolation on some numerical methods for a singularly perturbed turning point problem whose solution has boundary layers, J Korean Math Soc, 51, 4, 679-702 (2014) · Zbl 1311.65100 · doi:10.4134/JKMS.2014.51.4.679
[17] Munyakazi, JB; Patidar, KC; Sayi, MT, A robust fitted operator finite difference method for singularly perturbed problems whose solution has an interior layer, Math Comput Simul, 160, 155-167 (2019) · Zbl 1540.65241 · doi:10.1016/j.matcom.2018.12.010
[18] Natesan, S.; Jayakumar, J.; Vigo Aguiar, J., Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J Comput Appl Math, 158, 121-134 (2003) · Zbl 1033.65061 · doi:10.1016/S0377-0427(03)00476-X
[19] O’Malley, RE, Introduction to singular perturbations (1974), New York: Academic Press, New York · Zbl 0287.34062
[20] O’Malley, RE, Singular perturbation for ordinary differential equations (1991), New York: Springer, New York · Zbl 0743.34059 · doi:10.1007/978-1-4612-0977-5
[21] Polak S, Den Heiger C, Schilders WH, Markowich P (1987) Semiconductor device modelling from the numerical point of view. Int J Numer Methods Eng 24:763-838 · Zbl 0618.65125
[22] Sahoo, SK; Gupta, V., Second-order parameter-uniform finite difference scheme for singularly perturbed parabolic problem with a boundary turning point, J Differ Equ Appl, 27, 2, 223-240 (2021) · Zbl 1476.65176 · doi:10.1080/10236198.2021.1887157
[23] Sharma, KK; Rai, P.; Patidar, KC, A review on singularly perturbed differential equations with turning points and interior layers, Appl Math Comput, 219, 10575-10609 (2013) · Zbl 1302.34087
[24] Stynes, M.; Roos, HG, The midpoint upwind scheme, Appl Numer Math, 23, 361-374 (1997) · Zbl 0877.65055 · doi:10.1016/S0168-9274(96)00071-2
[25] Wasow, W., Linear turning point theory (1985), New York: Springer, New York · Zbl 0558.34049 · doi:10.1007/978-1-4612-1090-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.