×

A novel operational matrix for the numerical solution of nonlinear Lane-Emden system of fractional order. (English) Zbl 1476.65133

Summary: In this work, we introduce a numerical method for solving nonlinear fractional system of Lane-Emden type equations. The proposed technique is based on Dickson operational matrix of a fractional derivative. First, we deduce the Dickson operational matrix of the fractional derivative using Dickson polynomial, and then, the obtained matrix is unitized to convert the fractional Lane-Emden system with its initial conditions into a system of nonlinear algebraic equations. This system of algebraic equations can be solved numerically via Newton’s iteration method. An error estimate of the proposed method is derived. Numerical examples are provided to demonstrate the validity, applicability, and accuracy of the new technique.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
33C47 Other special orthogonal polynomials and functions
34A08 Fractional ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Abd-Elhameed, WM; Doha, EH; Youssri, YH; Bassuony, MA, New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, Numer Methods Partial Differ Equ, 36, 6, 1553-1571 (2016) · Zbl 1355.65129 · doi:10.1002/num.22074
[2] Ameen IG, Zaky MA, Doha EH (2021) Singularity preserving spectral collocation method for nonlinear systems of fractional differential equations with the right-sided Caputo fractional derivative. J Comput Appl Math 392:113468 · Zbl 1467.65075
[3] Babolian, E.; Eftekhari, A.; Saadatmandi, A., A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems, J Comput Appl Math, 34, 45-63 (2015) · Zbl 1318.65043
[4] Bhrawy, AH; Taha, TM; Machado, JAT, A review of operational matrices and spectral techniques for fractional calculus, Nonlinear Dyn, 81, 1023-1052 (2015) · Zbl 1348.65106 · doi:10.1007/s11071-015-2087-0
[5] D. Dominici, Orthogonality of the Dickson polynomials of the \((k + 1)\)-th kind. Johannes Kepler University Linz, Doktoratskolleg “Computational Mathematics”, Altenberger Straße 69, 4040 Linz, Austria (2017)
[6] Flockerzi, D.; Sundmacher, K., On coupled Lane-Emden equations arising in dusty fluid models, J Phys, 268, 012006 (2011)
[7] Gürbüz, B.; Sezer, M., Laguerre polynomial solutions of a class of initial and boundary value problems arising in science and engineering fields, Acta Phys Pol A, 132, 3, 558-560 (2017) · doi:10.12693/APhysPolA.132.558
[8] Hao, TC; Cong, FZ; Shang, YF, An efficient method for solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions and error estimate, J Math Chem, 56, 2691-2706 (2018) · Zbl 1415.65167 · doi:10.1007/s10910-018-0912-7
[9] Irfan, N.; Kumar, S.; Kapoor, S., Bernstein operational matrix approach for integro-differential equation arising in control theory, Nonlinear Eng Model Appl, 3, 2, 117-123 (2014)
[10] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and applications of fractional differential equations (2006), San Diego: Elsevier, San Diego · Zbl 1092.45003
[11] Kürkçü, ÖK; Aslan, E.; Sezer, M.; İlhan, O., A numerical approach technique for solving generalized delay integro-differential equations with functional bounds by means of Dickson polynomials, Int J Comput Methods, 36, 6, 18500239 (2016) · Zbl 1404.65327
[12] Muatjetjeja, B.; Khalique, CM, Noether, partial noether operators and first integrals for the coupled Lane-Emden system, Math Comput Appl, 15, 325-333 (2010) · Zbl 1201.35029
[13] Nagy, AM; Sweilam, NH; El-Sayed, AA, New operational matrix for solving multi-term variable order fractional differential equations, J Comput Nonlinear Dyn, 13, 011001-011007 (2018) · doi:10.1115/1.4037922
[14] Nagy, AM; El-Sayed, AA, An accurate numerical technique for solving two-dimensional time fractional order diffusion equation, Int J Model Simul, 39, 3, 214-221 (2019) · doi:10.1080/02286203.2019.1592285
[15] Narasimhan R (1985) Analysis on real and complex manifolds. North-Holland Mathematical Library, 35. North-Holland Publishing Co., Amsterdam · Zbl 0583.58001
[16] Naik, PA; Zu, J.; Owolabi, KM, Modelling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545, 1, 123816 (2020) · doi:10.1016/j.physa.2019.123816
[17] Odibat, Z.; Momani, S., The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput Math Appl, 58, 2199-2208 (2009) · Zbl 1189.65254 · doi:10.1016/j.camwa.2009.03.009
[18] Öztürk, Y.; Gülsu, M., Numerical solution of Abel equation using operational matrix method with Chebyshev polynomials, Asian-Eur J Math, 10, 3, 1750053 (2017) · Zbl 1376.34015 · doi:10.1142/S179355711750053X
[19] Öztürk, Y., An efficient numerical algorithm for solving system of Lane-Emden type equations arising in engineering, Nonlinear Eng, 8, 429-437 (2019) · doi:10.1515/nleng-2018-0062
[20] Parand, K.; Pirkhedri, A., Sinc-collocation method for solving astrophysics equations, New Astron, 15, 533-573 (2010) · doi:10.1016/j.newast.2010.01.001
[21] Parand, K.; Dehghan, M.; Rezaei, AR; Ghaderi, S., An approximation algorithm for the solution of the nonlinear Lane-Emden type equations arising in astrophysics using Hermite functions collocation method, Comput Phys Commun, 181, 1096-1108 (2010) · Zbl 1216.65098 · doi:10.1016/j.cpc.2010.02.018
[22] Pinto, CMA; Carvalho, ARM, Fractional modeling of typical stages in HIV epidemics with drug-resistance, Prog Fract Differ Appl, 1, 2, 111-122 (2015)
[23] Qureshi, S.; Yusuf, A., Modeling chickenpox disease with fractional derivatives: from caputo to atangana-baleanu, Chaos Solitons Fractals, 122, 111-118 (2019) · Zbl 1448.92331 · doi:10.1016/j.chaos.2019.03.020
[24] Rach, R.; Duan, JS; Wazwaz, AM, Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the adomian decomposition method, J Math Chem, 52, 255-267 (2014) · Zbl 1311.92222 · doi:10.1007/s10910-013-0260-6
[25] Sweilam, NH; Nagy, AM; El-Sayed, AA, Numerical approach for solving space fractional order diffusion equations using shifted Chebyshev polynomials of the fourth kind, Turk J Math, 40, 1283-1297 (2016) · Zbl 1438.35442 · doi:10.3906/mat-1503-20
[26] Sun, HG; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, YQ, A new collection of real world applications of fractional calculus in science and engineering, Commun Nonlinear Sci Numer Simul, 64, 213-231 (2018) · Zbl 1509.26005 · doi:10.1016/j.cnsns.2018.04.019
[27] Wang, Q.; Yucas, JL, Dickson polynomials over finite fields, Finite Fields Appl, 18, 4, 814-831 (2012) · Zbl 1266.11128 · doi:10.1016/j.ffa.2012.02.001
[28] Wazwaz, AM; Rach, R.; Duan, J-S, A study on the systems of the Volterra integral forms of the Lane-Emden equations by the Adomian decomposition method, Math Methods Appl Sci, 37, 1, 10-19 (2013) · Zbl 1302.34024 · doi:10.1002/mma.2776
[29] Zaky, MA; Ameen, IG; Abdelkawy, MA, A new operational matrix based on Jacobi wavelets for a class of variable-order fractional differential equations, Proc Roman Acad Ser A Math Phys Tech Sci Inf Sci, 18, 4, 315-322 (2017)
[30] Zaky, MA, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J Comput Appl Math, 357, 103-122 (2019) · Zbl 1415.41001 · doi:10.1016/j.cam.2019.01.046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.