×

A Wiener process model with truncated normal distribution for reliability analysis. (English) Zbl 1476.62215

Summary: The use of degradation model to perform the reliability analysis has drawn much attention due to the fact that the performance of numerous highly reliable systems degrades over time. To describe the unit-to-unit variability for a population of systems, the random effect has been incorporated into the degradation model that plays an important part in assessing the reliability of deteriorating systems. In the existing literature, the normal distribution is commonly adopted to represent the random effect, but the assumption can be unsuitable for some practical applications, such as the degradation process of train wheels. In this paper, we present a degradation modeling and reliability estimation approach by using truncated normal distribution to characterize the unit-to-unit variability. A Wiener process with truncated normal distribution is firstly applied to model the degradation process of the deteriorating system, and the analytical expressions of probability density function and reliability function are derived. Expectation maximization algorithm is then used to estimate the model parameters. The effectiveness and feasibility of the presented approach are illustrated through a numerical example and practical case studies for laser devices and train wheels. The results indicate that the presented approach can obtain better reliability estimation results by considering the truncated normal distribution when the unit-to-unit variability has significant difference.

MSC:

62N05 Reliability and life testing
60J65 Brownian motion
62F15 Bayesian inference
90B25 Reliability, availability, maintenance, inspection in operations research

Software:

SPLIDA
Full Text: DOI

References:

[1] Meeker, W. Q.; Escobar, L. A., Statistical Methods for Reliability Data (1998), Wiley: Wiley New York · Zbl 0949.62086
[2] Zio, E., Reliability engineering: old problems and new challenges, Reliab. Eng. Syst. Saf., 94, 125-141 (2009)
[3] Xing, L. D.; Levitin, G.; Wang, C. N.; Dai, Y. S., Reliability of systems subject to failures with dependent propagation effect, IEEE Trans. Syst. Man Cybern. Syst., 43, 2, 277-290 (2013)
[4] Si, X. S.; Hu, C. H.; Zhang, Q.; Li, T. M., An integrated reliability estimation approach with stochastic filtering and degradation modeling for phased-mission systems, IEEE Trans. Cybern. (2015)
[5] Lawless, J. F., Statistical Models and Methods for Lifetime Data (2002), Wiley: Wiley New York · Zbl 0541.62081
[6] Elmahdy, E. E.; Aboutahoun, A. W., A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling, Appl. Math. Model., 37, 4, 1800-1810 (2013) · Zbl 1349.90249
[7] Elmahdy, E. E., A new approach for Weibull modeling for reliability life data analysis, Appl. Math. Comput., 250, 708-720 (2015) · Zbl 1328.62573
[8] Wang, L., Inference of constant-stress accelerated life test for a truncated distribution under progressive censoring, Appl. Math. Model. (2017) · Zbl 1443.62323
[9] Ye, Z. S.; Hong, Y. L.; Xie, Y. M., How do heterogeneities in operating environments affect field failures predictions and test planning?, Ann. Appl. Stat., 7, 4, 2249-2271 (2013) · Zbl 1283.62210
[10] Peng, C. Y.; Tseng, S. T., Mis-specification analysis of linear degradation models, IEEE Trans. Reliab., 58, 3, 444-455 (2009)
[11] Peng, C. Y.; Tseng, S. T., Statistical lifetime inference with Skew-Wiener linear degradation models, IEEE Trans. Reliab., 62, 2, 338-350 (2013)
[12] Wang, X., Wiener processes with random effects for degradation data, J. Multivar. Anal., 101, 2, 340-351 (2010) · Zbl 1178.62091
[13] Si, X. S.; Wang, W. B.; Hu, C. H.; Zhou, D. H., Estimating remaining useful life with three-source variability in degradation modeling, IEEE Trans. Reliab., 63, 1, 167-190 (2014)
[14] Zhou, R. S.; Serban, N.; Gebraeel, N., Degradation modeling applied to residual lifetime prediction using functional data analysis, Ann. Appl. Stat., 5, 2B, 1586-1610 (2011) · Zbl 1223.62156
[15] Pan, Z. Q.; Balakrishnan, N., Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes, Reliab. Eng. Syst. Saf., 96, 949-957 (2011)
[16] Si, X. S.; Wang, W. B.; Hu, C. H.; Zhou, D. H., Remaining useful life estimation - a review on the statistical data driven approaches, Eur. J. Oper. Res., 213, 1, 1-14 (2011)
[17] Wang, X.; Xu, D., An inverse Gaussian process model for degradation data, Technometrics, 52, 2, 188-197 (2010)
[18] Ye, Z. S.; Chen, N., The inverse Gaussian process as a degradation model, Technometrics, 56, 3, 302-311 (2014)
[19] Peng, C., Inverse Gaussian processes with random effects and explanatory variables for degradation data, Technometrics, 57, 1, 100-111 (2014)
[20] Peng, W. W.; Li, Y. F.; Yang, Y. J.; Huang, H. Z.; Zuo, M. J., Inverse Gaussian process models for degradation analysis: a Bayesian perspective, Reliab. Eng. Syst. Saf., 130, 175-189 (2014)
[21] Pan, D. H.; Liu, J. B.; Cao, J. D., Remaining useful life estimation using an inverse Gaussian degradation model, Neurocomputing, 185, 64-72 (2016)
[22] Noortwijk, J. M.V., A survey of the application of gamma processes in maintenance, Reliab. Eng. Syst. Saf., 94, 1, 2-21 (2009)
[23] Ye, Z. S.; Xie, M.; Tang, L. C.; Chen, N., Semiparametric estimation of gamma processes for deteriorating products, Technometrics, 56, 4, 504-513 (2014)
[24] Whitmore, G. A.; Schenkelberg, F., Modelling accelerated degradation data using Wiener diffusion with a time scale transformation, Lifetime Data Anal., 3, 1, 27-45 (1997) · Zbl 0891.62071
[25] Whitmore, G. A.; Crowder, M.; Lawless, J., Failure inference from a marker process based on a bivariate Wiener model, Lifetime Data Anal., 4, 3, 229-251 (1998) · Zbl 0911.62080
[26] Ye, Z. S.; Shen, Y.; Xie, M., Degradation-based burn-in with preventive maintenance, Eur. J. Oper. Res., 221, 2, 360-367 (2012) · Zbl 1253.90098
[27] Gebraeel, N.; Lawley, M. A.; Li, R.; Ryan, K. J., Residual-life distributions from component degradation signals: a Bayesian approach, IIE Trans., 37, 543-557 (2005)
[28] Ye, Z. S.; Wang, Y.; Tsui, K. L.; Pecht, M., Degradation data analysis using Wiener processes with measurement errors, IEEE Trans. Reliab., 62, 4, 772-780 (2013)
[29] Li, H.; Pan, D. H.; Chen, C. L.P., Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels, IEEE Trans. Cybern., 45, 5, 955-963 (2015)
[30] Si, X. S.; Zhou, D. H., A generalized result for degradation model based reliability estimation, IEEE Trans. Autom. Sci. Eng., 11, 2, 632-637 (2014)
[31] Ferreira, J. C.; Freitas, M. A.; Colosimo, E. A., Using degradation data to assess reliability: a case study on train wheel degradation, Qual. Reliab. Eng. Int., 25, 607-629 (2009)
[32] Freitas, M. A.; Colosimo, E. A.; Santos, T. R.; Pires, M. C., Reliability assessment using degradation models: Bayesian and classical approaches, Pesqui. Oper., 30, 1, 194-219 (2010)
[33] Si, X. S.; Wang, W. B.; Hu, C. H.; Chen, M. Y.; Zhou, D. H., A Wiener process-based degradation model with a recursive filter algorithm for remaining useful life estimation, Mech. Syst. Signal Process., 35, 1-2, 219-237 (2013)
[34] Cohen, A., On estimating the mean and standard deviation of truncated normal distributions, J. Am. Stat. Assoc., 44, 518-525 (1949) · Zbl 0035.21503
[35] Owen, D. B., A table of normal integrals, Commun. Stat. -Simul. Comput., 9, 389-419 (1980) · Zbl 0462.62089
[36] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39, 1, 1-38 (1977) · Zbl 0364.62022
[37] Si, X. S.; Wang, W. B.; Chen, M. Y.; Hu, C. H.; Zhou, D. H., A degradation path-dependent approach for remaining useful life estimation with an exact yet closed-form solution, Eur. J. Oper. Res., 226, 1, 53-66 (2013) · Zbl 1292.62138
[38] Ng, T. S., An application of the EM algorithm to degradation modeling, IEEE Trans. Reliab., 57, 1, 2-13 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.