×

Inverse problems for ergodicity of Markov chains. (English) Zbl 1476.60135

The paper deals mostly with continuous-time Markov chains and provides criteria for non-ergodicity, nonalgebraic ergodicity, non-exponential ergodicity, and non-strong ergodicity. For discrete-time Markov chains, it contains criteria for non-ergodicity, non-algebraic ergodicity, and non-strong ergodicity. The criteria are given in terms of the existence of solutions to inequalities involving the \(Q\)-matrix (or transition matrix \(P\) in time-discrete case) of the chain. Theorem 1 represents a typical result of the paper. Let \(\Pi = \left( {{\Pi _{ij}}:i,j \in E} \right)\) be the matrix of the embedded chain of the \(Q\)-process.
Theorem 1. Let \(Q\) be an irreducible regular \(Q\)-matrix and \(H\) be a non-empty finite subset of \(E\). Then the \(Q\)-process is non-ergodic iff there exists a sequence \(\left\{ {{y^{(n)}}} \right\}_{n = 1}^\infty \), where \({y^{(n)}} = {(y_i^{(n)})_{i \in E}}\) for each \(n \ge 1\), and \(\left\{ {{y^{(n)}}} \right\}_{n = 1}^\infty \) satisfies the following conditions: (1) for each \(n \ge 1\), \({y^{(n)}} = {(y_i^{(n)})_{i \in E}}\) satisfies \({\sup _{i \in E}}y_i^{(n)} < \infty \) and solves the inequality \({y_i} \le \sum\limits_{j \notin H} {{\Pi _{ij}}{y_j}} + \frac{1}{{{q_i}}}\),\(i \in E\); (2) \({\sup _{n \ge 1}}{\max _{i \in H}}y_i^{(n)} = \infty \).
The author applies these results to a special class of single birth processes and several multidimensional models.

MSC:

60J27 Continuous-time Markov processes on discrete state spaces
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)

References:

[1] Andreev, D. B.; Krylov, E. A.; Zeifman, A. I., On nonergodicity of some continuous-time Markov chains, J. Math. Sci., 122, 3332-3335 (2004) · Zbl 1089.60044
[2] Chen, J.-W., Positive ergodicity of finite-dimensional Brussel’s model, Acta Math. Sci., 15, 2, 121-125 (1995), (in Chinese) · Zbl 0900.92161
[3] Chen, M.-F., Eigenvalues, Inequalities and Ergodic Theory (2004), Springer
[4] Chen, M.-F., From Markov Chains to Non-Equilibrium Particle Systems (2004), World Scientific: World Scientific Singapore · Zbl 1078.60003
[5] Chen, M.-F.; Wang, Y.-Z., Algebraic convergence of Markov chains, Ann. Appl. Probab., 13, 2, 604-627 (2003) · Zbl 1030.60070
[6] Chen, M.-F.; Zhang, Y.-H., Unified representation of formulas for single birth processes, Front. Math. China, 9, 4, 761-796 (2014) · Zbl 1318.60085
[7] Hairer, M., Convergence of Markov processes (Jan. 2016), Lecture Notes
[8] Hou, Z.-T.; Guo, Q.-F., Time-Homogeneous Denumerable Markov Processes (1978), Science Press
[9] Kaplan, M., A sufficient condition for nonergodicity of a Markov chain, IEEE Trans. Inf. Theory, IT-25, 4, 470-471 (1992) · Zbl 0444.94002
[10] Mao, Y.-H., Algebraic convergence for discrete-time ergodic Markov chains, Sci. China Ser. A, 46, 5, 621-630 (2003) · Zbl 1084.60534
[11] Mao, Y.-H., Ergodic degrees for continuous-time Markov chains, Sci. China Ser. A, Math., 47, 2, 161-174 (2004) · Zbl 1067.60069
[12] Mao, Y.-H.; Zhang, Y.-H., Exponential ergodicity for single-birth processes, J. Appl. Probab., 41, 1022-1032 (2004) · Zbl 1062.60089
[13] Meyn, S.; Tweedie, R. L., Stability of Markovian processes I: criteria for discrete-time chains, Adv. Appl. Probab., 24, 3, 542-574 (1992) · Zbl 0757.60061
[14] Meyn, S.; Tweedie, R. L., Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab., 25, 3, 487-517 (1993) · Zbl 0781.60052
[15] Meyn, S.; Tweedie, R. L., Stability of Markovian processes III: Foster- Lyapunov criteria for continuous-time, Adv. Appl. Probab., 25, 3, 518-548 (1993) · Zbl 0781.60053
[16] Meyn, S.; Tweedie, R. L., Markov Chains and Stochastic Stability (2009), Cambridge University Press · Zbl 1165.60001
[17] Sennott, L., Tests for the nonergodicity of multidimensional Markov chains, Oper. Res., 33, 1, 161-167 (1985) · Zbl 0569.60068
[18] Sennott, L., Conditions for the non-ergodicity of Markov chains with application to a communication system, J. Appl. Probab., 24, 2, 339-346 (1987) · Zbl 0622.60075
[19] Sennott, L.; Humblet, P.; Tweedie, R. L., Mean drifts and the non-ergodicity of Markov chains, Oper. Res., 31, 4, 783-789 (1983) · Zbl 0525.60072
[20] Tweedie, R. L., Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes, J. Appl. Probab., 18, 1, 122-130 (1981) · Zbl 0458.60070
[21] Wu, B.; Zhang, Y.-H., A class of multidimensional Q-processes, J. Appl. Probab., 44, 1, 226-237 (2007) · Zbl 1133.60345
[22] Yan, S.-J.; Chen, M.-F., Multi-dimensional Q-processes, Chin. Ann. Math., Ser. B, 7, 1, 90-110 (1986) · Zbl 0596.60074
[23] Zhang, Y.-H., Strong ergodicity for single-birth processes, J. Appl. Probab., 38, 1, 270-277 (2001) · Zbl 0984.60083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.