×

Thermodynamic formalism methods in the theory of iteration of mappings in dimension one, real and complex. (English) Zbl 1476.37053

This survey is focused on the application of thermodynamic formalism to hyperbolic and non-hyperbolic dynamics. In particular, the Hausdorff dimension and the Lyapunov exponents are two main topics of this contribution.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37E05 Dynamical systems involving maps of the interval
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
37F35 Conformal densities and Hausdorff dimension for holomorphic dynamical systems
31A20 Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions

References:

[1] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes in Math., 470, Springer-Verlag, Berlin-New York, 1975. · Zbl 0308.28010
[2] H. Bruin, J. Rivera-Letelier, W. Shen, and S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), no.3, 509-533. · Zbl 1138.37019
[3] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer-Verlag, Berlin, 1993. · Zbl 0791.58003
[4] M. Denker, F. Przytycki, and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 255-266. · Zbl 0852.46024
[5] N. Dobbs and M. Todd, Free energy and equilibrium states for families of interval maps, to appear in Mem. Amer. Math. Soc. Avaliable at arXiv:1512.09245.
[6] K. Gelfert, F. Przytycki, and M. Rams, On the Lyapunov spectrum for rational maps, Math. Ann. 348 (2010), no. 4, 965-1004. · Zbl 1206.37016
[7] K. Gelfert, F. Przytycki, and M. Rams, Lyapunov spectrum for multimodal maps, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1441-1493. · Zbl 1353.37061
[8] H. Hedenmalm and I. Kayumov, On the Makarov law of the iterated logarithm, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2235-2248. · Zbl 1117.30024
[9] I. Inoquio-Renteria and J. Rivera-Letelier, A characterization of hyperbolic potentials of rational maps, Bull. Braz. Math. Soc. (N.S.) 43 (2012), no. 1, 99-127. · Zbl 1268.37030
[10] A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. · Zbl 0298.28015
[11] G. Levin, F. Przytycki, and W. Shen, The Lyapunov exponent of holomorphic maps, Invent. Math. 205 (2016), no. 2, 363-382. · Zbl 1352.37136
[12] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), no. 1, 161-179. · Zbl 0569.58024
[13] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309-317. · Zbl 0787.58037
[14] F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), no. 3, 259-278. · Zbl 0812.58058
[15] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081-2099. · Zbl 0920.58037
[16] F. Przytycki, Geometric pressure in real and complex 1-dimensional dynamics via trees of pre-images and via spanning sets, Monatsh. Math. 185 (2018), no. 1, 133-158. · Zbl 1388.37020
[17] F. Przytycki, Thermodynamic formalism methods in one-dimensional real and complex dynamics, in: B. Sirakov et al. (Eds.), Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, Vol. III, World Scientific, Singapore, 2018, pp. 2105-2132. · Zbl 1451.37047
[18] F. Przytycki, Metody formalizmu termodynamicznego w jednowymiarowej dynamice rzeczywistej i zespolonej, Wiad. Mat. 54 (2018), no. 1, 23-53. · Zbl 1423.37033
[19] F. Przytycki and J. Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Comm. Math. Phys. 301 (2011), no. 3, 661-707. · Zbl 1211.37055
[20] F. Przytycki and J. Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Mem. Amer. Math. Soc. 259 (2019), no. 1246, 81 pp. · Zbl 1443.37003
[21] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), no. 1, 29-63. · Zbl 1038.37035
[22] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 891-914. · Zbl 1058.37032
[23] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189-199. · Zbl 0908.58054
[24] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), no. 3, 425-440. · Zbl 0704.30035
[25] F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note Series, 371, Cambridge University Press, Cambridge, 2010. · Zbl 1202.37001
[26] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, I, Ann. of Math. (2) 130 (1989), no. 1, 1-40. · Zbl 0703.58036
[27] F. Przytycki, M. Urbański, and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, II, Studia Math. 97 (1991), no. 3, 189-225. · Zbl 0732.58022
[28] D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publ. Co., London, 1978. · Zbl 0401.28016
[29] Ya.G. Sinai, Gibbs measures in ergodic theory, (Russian) Uspehi Mat. Nauk 27 (1972), no. 4(166), 21-64. Russ. Math. Surv. 27 (1972), no. 4, 21-69 (English). · Zbl 0255.28016
[30] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. · Zbl 0475.28009
[31] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), no. 3, 627-649. · Zbl 0820.58038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.