×

Dynamics for a class of non-autonomous degenerate \(p\)-Laplacian equations. (English) Zbl 1476.35123

Summary: In this paper, we investigate a class of non-autonomous degenerate \(p\)-Laplacian equations \[ \partial_tu-\operatorname{div}(a(x)|\nabla u|^{p-2}\nabla u)+\lambda u+f(u)=g(x,t) \] in \(\Omega\), where \(a(x)\) is allowed to vanish on a nonempty closed subset with Lebesgue measure zero, \(g(x,t)\in L_{\text{loc}}^{p'}(\mathbb{R};D^{-1,p'}(\Omega,a))\) and \(\Omega\) an unbounded domain in \(\mathbb{R}^N\). We first establish the well-posedness of these equations by constructing a compact embedding. Then we show the existence of the minimal pullback \(\mathcal{D}_\mu\)-attractor, and prove that it indeed attracts the \(\mathcal{D}_\mu\) class in \(L^{2+\delta}\)-norm for any \(\delta\in[0,\infty)\). Our results extend some known ones in previously published papers.

MSC:

35K59 Quasilinear parabolic equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35B41 Attractors
35K20 Initial-boundary value problems for second-order parabolic equations
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0314.46030
[2] Alves, C. O.; Shmarev, S.; Simsen, J.; Simsen, M. S., The Cauchy problem for a class of parabolic equations in weighted variable Sobolev spaces: existence and asymptotic behavior, J. Math. Anal. Appl., 443, 265-294 (2016) · Zbl 1381.35092
[3] Anh, C. T.; Chuong, N. M.; Ke, T. D., Global attractor for the m-semiflow generated by a quasilinear degenerate parabolic equation, J. Math. Anal. Appl., 363, 2, 444-453 (2010) · Zbl 1181.35138
[4] Anh, C. T.; Ke, T. D., Long-time behavior for quasilinear parabolic equations involving weighted p-Laplacian operators, Nonlinear Anal., 71, 4415-4422 (2009) · Zbl 1173.35024
[5] Anh, C. T.; Ke, T. D., On quasilinear parabolic equations involving weighted \(p\)-Laplacian operators, NoDEA Nonlinear Differential Equations Appl., 17, 195-212 (2010) · Zbl 1203.35156
[6] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011), Springer: Springer Berlin · Zbl 1220.46002
[7] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weight, Compos. Math., 53, 259-275 (1984) · Zbl 0563.46024
[8] Caldiroli, P.; Musina, R., On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl., 7, 2, 187-199 (2000) · Zbl 0960.35039
[9] Caraballo, T.; Łukaszewicz, G.; Real, J., Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64, 484-498 (2006) · Zbl 1128.37019
[10] Carvalho, A. N.; Langa, J. A.; Robinson, J. C., Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems (2012), Springer: Springer New York · Zbl 1282.35042
[11] Chapman, S. J.; Ridhardson, G., Vortex pining by inhomogeneities in type-II superconductors, Phys. D, 108, 397-407 (1997) · Zbl 1039.82510
[12] Chen, X.; Jimbo, S.; Morita, Y., Stabilization of vortices in the Ginzburg-Landau equation with a variable diffusion coefficient, SIAM J. Math. Anal., 29, 903-912 (1998) · Zbl 0910.35054
[13] Crauel, H.; Flandoli, F., Attractors for random dynamical systems, Probab. Theory Related Fields, 100, 365-393 (1994) · Zbl 0819.58023
[14] Dautray, R.; Lions, J-L., Mathematical Analysis and Numerical Methods for Science and Technology, vol. I: Physical Origins and Classical Methods (1985), Springer: Springer Berlin
[15] Dibenedetto, E., Degenerate Parabolic Equations (1993), Springer: Springer New York · Zbl 0794.35090
[16] García-Luengo, J.; Marín-Rubio, P.; Real, J., Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour, J. Differential Equations, 252, 4333-4356 (2012) · Zbl 1264.35053
[17] Jimbo, S.; Morita, Y., Stable vortex solutions to the Ginzburg-Landau equation with a variable coefficient in a disk, J. Differential Equations, 155, 153-176 (1999) · Zbl 0928.35047
[18] Karachalios, N. I.; Zographopoulos, N. B., Convergence towards attractors for a degenerate Ginzburg-Landau equation, Z. Angew. Math. Phys., 56, 11-30 (2005) · Zbl 1181.35133
[19] Karachalios, N. I.; Zographopoulos, N. B., On the dynamics of a degenerate parabolic equation: global bifurcation of stationary states and convergence, Calc. Var. Partial Differential Equations, 25, 361-393 (2006) · Zbl 1090.35035
[20] Kloeden, P. E.; Rasmussen, M., Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, vol. 176 (2011), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1244.37001
[21] Kloeden, P. E.; Real, J.; Sun, C., Pullback attractors for a semilinear heat equation on time-varying domains, J. Differential Equations, 246, 4702-4730 (2009) · Zbl 1173.37064
[22] Kufner, A.; Opic, B., How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin., 25, 537-554 (1984) · Zbl 0557.46025
[23] Li, H.; Ma, S.; Zhong, C., Long-time behavior for a class of degenerate parabolic equations, Discrete Contin. Dyn. Syst., 34, 2873-2892 (2014) · Zbl 1292.74015
[24] Li, X.; Sun, C.; Zhou, F., Pullback attractors for a non-autonomous semilinear degenerate parabolic equation, Topol. Methods Nonlinear Anal., 47, 511-528 (2016) · Zbl 1368.35162
[25] Lions, J-L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[26] Łukaszewicz, G., On pullback attractors in \(L^p\) for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73, 350-357 (2010) · Zbl 1195.35061
[27] Ma, S.; Li, H., Global attractors for weighted p-Laplacian equations with boundary degeneracy, J. Math. Phys., 53, Article 012701 pp. (2012) · Zbl 1273.35130
[28] Sun, C.; Tan, W., Non-autonomous reaction-diffusion model with dynamic boundary conditions, J. Math. Anal. Appl., 443, 1007-1032 (2016) · Zbl 1386.35256
[29] Tan, W.; Ji, Y., On the pullback attractor for the non-autonomous SIR equations with diffusion, J. Math. Anal. Appl., 449, 1850-1862 (2017) · Zbl 1357.35055
[30] Tan, W.; Sun, C., Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion, Discrete Contin. Dyn. Syst., 37, 6035-6067 (2017) · Zbl 1386.35213
[31] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), Springer: Springer New York · Zbl 0871.35001
[32] Yang, M.; Kloeden, P. E., Random attractors for stochastic semi-linear degenerate parabolic equations, Nonlinear Anal. Real World Appl., 12, 2811-2821 (2011) · Zbl 1222.35042
[33] Zhong, C.; Yang, M.; Sun, C., The existence of global attractors for the norm-to-weak continuous semigroup and its application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223, 367-399 (2006) · Zbl 1101.35022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.