×

Certification for polynomial systems via square subsystems. (English) Zbl 1476.14103

Given a set of polynomials \(f = (f_1,\dots,f_N)\) with \(f_i \in \mathbb C[z_1,\dots,z_n]\), an approximate solution to the system \(f_1(z) = 0, \dots, f_N(z) = 0\) is an estimate \(\hat \zeta\) of some point \(\zeta\) in the common vanishing locus of the \(f_i\) (i.e. \(\zeta\) is a solution of the system \(f\)). By “approximate solution” the authors mean that the approximation error \(\| \zeta - \hat \zeta \|\) can be refined efficiently as a function of the input size and the desired precision. To verify that an approximation is suitable, numerical certification seeks to develop criteria and algorithms. In this paper the authors produce algorithms to address the following problems:
(1)
How to certify that a point \(\zeta \in \mathbb C^n\) is an approximate solution of \(f\)?
(2)
If it is known that \(f\) has \(e\) solutions, how can we certify that a set \(Z \subset \mathbb C^n\) of \(e\) points consists of approximate solutions to \(f\)?
The authors consider numerical certification of approximate solutions to a system of polynomial equations with more equations than unknowns by first certifying solutions to a suitable square subsystem. They give several approaches, using different additional information. Among these are liaison, Newton-Okounkov bodies, or intersection theory. They may be used to certify individual solutions, reject non-solutions, or certify that we have found all solutions.

MSC:

14Q65 Geometric aspects of numerical algebraic geometry
65G20 Algorithms with automatic result verification
65H10 Numerical computation of solutions to systems of equations

References:

[1] Ayyildiz Akoglu, Tulay; Hauenstein, Jonathan D.; Szanto, Agnes, Certifying solutions to overdetermined and singular polynomial systems over \(\mathbb{Q} \), J. Symb. Comput., 84, 147-171 (2018) · Zbl 1415.65121
[2] Bernshtein, David N., The number of roots of a system of equations, Funct. Anal. Appl., 9, 3, 183-185 (1975) · Zbl 0328.32001
[3] Blum, Lenore; Cucker, Felipe; Shub, Michael; Smale, Stephen, Complexity and Real Computation (1998), Springer-Verlag: Springer-Verlag New York
[4] Burr, Michael; Lee, Kisun; Leykin, Anton, Effective certification of approximate solutions to systems of equations involving analytic functions, (Proceedings of the 2019 ACM on International Symposium on Symbolic and Algebraic Computation (2019), ACM), 267-274 · Zbl 1467.65049
[5] Dedieu, J.-P.; Shub, M., Newton’s method for overdetermined systems of equations, Math. Comput., 69, 231, 1099-1115 (2000) · Zbl 0949.65061
[6] Demazure, Michel, Sur deux problemes de reconstruction (1988), INRIA, Technical Report 882
[7] Deuflhard, Peter, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35 (2011), Springer Science & Business Media · Zbl 1226.65043
[8] Fulton, William, Young Tableaux, London Mathematical Society Students Texts, vol. 35 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0878.14034
[9] Gragg, W. B.; Tapia, R. A., Optimal error bounds for the Newton-Kantorovich theorem, SIAM J. Numer. Anal., 11, 1, 10-13 (1974) · Zbl 0284.65042
[10] Grayson, Daniel R.; Stillman, Michael E., Macaulay 2, a Software System for Research in Algebraic Geometry (2002)
[11] Hauenstein, Jonathan D.; Hein, Nickolas; Sottile, Frank, A primal-dual formulation for certifiable computations in Schubert calculus, Found. Comput. Math., 16, 4, 941-963 (2016) · Zbl 1360.14126
[12] Hauenstein, Jonathan D.; Sottile, Frank, Algorithm 921: alphaCertified: certifying solutions to polynomial systems, ACM Trans. Math. Softw., 38, 4, 28 (2012) · Zbl 1365.65148
[13] Hein, Nickolas; Sottile, Frank, A lifted square formulation for certifiable Schubert calculus, J. Symb. Comput., 79, part 3, 594-608 (2017) · Zbl 1356.14043
[14] Kantorovich, Leonid Vitalevich; Akilov, Gleb Pavlovich, Functional Analysis (1982), Pergamon · Zbl 0484.46003
[15] Kapur, Deepak; Madlener, Klaus, A completion procedure for computing a canonical basis for a k-subalgebra, (Computers and Mathematics. Computers and Mathematics, Cambridge, MA, 1989 (1989), Springer), 1-11 · Zbl 0692.13001
[16] Kaveh, K.; Manon, C., Khovanskii bases, higher rank valuations and tropical geometry, SIAM J. Appl. Algebra Geom., 3, 2, 292-336 (2019) · Zbl 1423.13145
[17] Kaveh, Kiumars; Khovanskii, Askold Georgievich, Mixed volume and an extension of intersection theory of divisors, Mosc. Math. J., 10, 2, 343-375 (2010) · Zbl 1287.14001
[18] Kaveh, Kiumars; Khovanskii, Askold Georgievich, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., 925-978 (2012) · Zbl 1270.14022
[19] Kleiman, Steven L., The transversality of a general translate, Compos. Math., 28, 287-297 (1974) · Zbl 0288.14014
[20] Kleppe, Jan O.; Migliore, Juan C.; Miró-Roig, Rosa; Nagel, Uwe; Peterson, Chris, Gorenstein liaison, complete intersection liaison invariants and unobstructedness, Mem. Am. Math. Soc., 154, 732 (2001), viii+116 · Zbl 1006.14018
[21] Krawczyk, Rudolf, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-Schranken, Computing, 4, 3, 187-201 (1969) · Zbl 0187.10001
[22] Kulisch, Ulrich W.; Miranker, Willard L., Computer Arithmetic in Theory and Practice (2014), Academic Press · Zbl 0487.65026
[23] Kušnirenko, A. G., Newton polyhedra and Bezout’s theorem, Funkc. Anal. Prilozh., 10, 3, 82-83 (1976) · Zbl 0328.32002
[24] Lecerf, Grégoire; Saadé, Joelle, A short survey on Kantorovich-like theorems for Newton’s method, ACM Commun. Comput. Algebra, 50, 1, 1-11 (2016) · Zbl 1365.65155
[25] Lee, Kisun, NumericalCertification: a Macaulay2 package (2016), Version 1.0. A Macaulay2 package available at
[26] Leykin, Anton, Numerical algebraic geometry, J. Softw. Algebra Geom., 3, 1, 5-10 (2011) · Zbl 1311.14057
[27] Leykin, Anton; Martin del Campo, Abraham; Sottile, Frank; Vakil, Ravi; Verschelde, Jan, Numerical Schubert calculus via the Littlewood-Richardson homotopy algorithm (2018), arXiv preprint · Zbl 1468.14093
[28] Moore, Ramon E.; Jones, Sandie T., Safe starting regions for iterative methods, SIAM J. Numer. Anal., 14, 6, 1051-1065 (1977) · Zbl 0371.65009
[29] Moore, Ramon E.; Kearfott, R. Baker; Cloud, Michael J., Introduction to Interval Analysis, vol. 110 (2009), Siam · Zbl 1168.65002
[30] Nistér, David, An efficient solution to the five-point relative pose problem, IEEE Trans. Pattern Anal. Mach. Intell., 26, 6, 756-777 (2004)
[31] Robbiano, Lorenzo; Sweedler, Moss, Subalgebra bases, (Commutative Algebra (1990), Springer), 61-87 · Zbl 0725.13013
[32] Rouillier, Fabrice, Solving zero-dimensional systems through the rational univariate representation, Appl. Algebra Eng. Commun. Comput., 9, 5, 433-461 (1999) · Zbl 0932.12008
[33] Shannon, David; Sweedler, Moss, Using Gröbner bases to determine algebra membership, split surjective algebra homomorphisms determine birational equivalence, J. Symb. Comput., 6, 2-3, 267-273 (1988) · Zbl 0681.68052
[34] Shub, Michael; Smale, Steve, Complexity of Bezout’s theorem I: geometric aspects, J. Am. Math. Soc., 6, 2, 459-501 (1993) · Zbl 0821.65035
[35] Smale, Steve, Newton’s method estimates from data at one point, (The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (1986), Springer: Springer New York), 185-196 · Zbl 0613.65058
[36] Snavely, Noah; Seitz, Steven M.; Szeliski, Richard, Modeling the world from Internet photo collections, Int. J. Comput. Vis., 80, 2, 189-210 (2008)
[37] Sottile, Frank, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math. J., 87, 1, 59-85 (1997) · Zbl 0986.14033
[38] Stillman, Michael; Tsai, Harrison, Using SAGBI bases to compute invariants, J. Pure Appl. Algebra, 139, 1-3, 285-302 (1999) · Zbl 0928.14038
[39] Sturmfels, Bernd, Gröbner Bases and Convex Polytopes, University Lecture Series, vol. 8 (1996), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0856.13020
[40] Tapia, R. A., The Kantorovich theorem for Newton’s method, Am. Math. Mon., 78, 4, 389-392 (1971) · Zbl 0215.27404
[41] Tucker, Warwick, Validated Numerics: A Short Introduction to Rigorous Computations (2011), Princeton University Press · Zbl 1231.65077
[42] Wampler, Charles; Sommese, Andrew, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (2005), World Scientific · Zbl 1091.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.