×

Combinatorics of the double-dimer model. (English) Zbl 1476.05170

Summary: We prove that the partition function for tripartite double-dimer configurations of a planar bipartite graph satisfies a recurrence related to the Desnanot-Jacobi identity from linear algebra. A similar identity for the dimer partition function was established nearly 20 years ago by E. H. Kuo [Theor. Comput. Sci. 319, No. 1–3, 29–57 (2004; Zbl 1043.05099)] and has applications to random tiling theory and the theory of cluster algebras. This work was motivated in part by the potential for applications in these areas. Additionally, we discuss an application to a problem in Donaldson-Thomas and Pandharipande-Thomas theory. The proof of our recurrence requires generalizing work of R. W. Kenyon and D. B. Wilson [Trans. Am. Math. Soc. 363, No. 3, 1325–1364 (2011; Zbl 1230.60009); Electron. J. Comb. 16, No. 1, Research Paper R112, 28 p. (2009; Zbl 1225.60020)]; specifically, lifting their assumption that the nodes of the graph are black and odd or white and even.

MSC:

05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory
13F60 Cluster algebras
05A15 Exact enumeration problems, generating functions
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14D20 Algebraic moduli problems, moduli of vector bundles

References:

[1] Bridgeland, T., Hall algebras and curve-counting invariants, J. Am. Math. Soc., 24, 4, 969-998 (2011) · Zbl 1234.14039
[2] Di Francesco, P.; Golinelli, O.; Guitter, E., Meanders and the Temperley-Lieb algebra, Commun. Math. Phys., 186, 1, 1-59 (1997) · Zbl 0873.05008
[3] Dubédat, J., Double dimers, conformal loop ensembles and isomonodromic deformations, J. Eur. Math. Soc., 21, 1, 1-54 (2019) · Zbl 1468.60013
[4] Fomin, S.; Zelevinsky, A., Cluster algebras. I. Foundations, J. Am. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017
[5] Ghodratipour, N.; Rouhani, S., Connection probabilities in the double-dimer model-the case of two connectivity patterns (2019), preprint
[6] Jenne, H.; Webb, G.; Young, B., The combinatorial PT-DT correspondence (2020), preprint
[7] Kasteleyn, P. W., Graph theory and crystal physics, (Graph Theory and Theoretical Physics (1967), Academic Press: Academic Press London), 43-110 · Zbl 0205.28402
[8] Kenyon, R., Conformal invariance of loops in the double-dimer model, Commun. Math. Phys., 326, 2, 477-497 (2014) · Zbl 1283.05218
[9] Kenyon, R.; Pemantle, R., Double-dimers, the Ising model and the hexahedron recurrence, J. Comb. Theory, Ser. A, 137, 27-63 (2016) · Zbl 1325.05136
[10] Kenyon, R. W.; Wilson, D. B., Combinatorics of tripartite boundary connections for trees and dimers, Electron. J. Comb., 16, 1 (2009) · Zbl 1225.60020
[11] Kenyon, R. W.; Wilson, D. B., Boundary partitions in trees and dimers, Trans. Am. Math. Soc., 363, 3, 1325-1364 (2011) · Zbl 1230.60009
[12] Kenyon, R. W.; Wilson, D. B., Double-dimer pairings and skew Young diagrams, Electron. J. Comb., 18, 1, Article 130 pp. (2011) · Zbl 1247.05025
[13] Kuo, E. H., Applications of graphical condensation for enumerating matchings and tilings, Theor. Comput. Sci., 319, 1-3, 29-57 (2004) · Zbl 1043.05099
[14] Kuperberg, G., Symmetries of plane partitions and the permanent-determinant method, J. Comb. Theory, 68, 115-151 (1994) · Zbl 0819.05007
[15] Lai, T.; Musiker, G., Beyond Aztec castles: toric cascades in the \(d P_3\) quiver, Commun. Math. Phys., 356, 3, 823-881 (2017) · Zbl 1401.13066
[16] Lai, T.; Musiker, G., Dungeons and Dragons: combinatorics for the \(d P_3\) quiver, Ann. Comb., 24, 2, 257-309 (2020) · Zbl 1454.13034
[17] MacMahon, P. A., Combinatory Analysis (1915-1916), Cambridge University Press: Cambridge University Press Cambridge, UK · JFM 45.1271.01
[18] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math., 142, 5, 1263-1285 (2006) · Zbl 1108.14046
[19] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math., 142, 5, 1286-1304 (2006) · Zbl 1108.14047
[20] Maulik, D.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math., 186, 2, 435-479 (2011) · Zbl 1232.14039
[21] Pandharipande, R.; Thomas, R. P., The 3-fold vertex via stable pairs, Geom. Topol., 13, 4, 1835-1876 (2009) · Zbl 1195.14073
[22] Pandharipande, R.; Thomas, R. P., Curve counting via stable pairs in the derived category, Invent. Math., 178, 2, 407-447 (2009) · Zbl 1204.14026
[23] Toda, Y., Curve counting theories via stable objects I. DT/PT correspondence, J. Am. Math. Soc., 23, 4, 1119-1157 (2010) · Zbl 1207.14020
[24] Williams, L. K., Cluster algebras: an introduction, Bull. Am. Math. Soc. (N.S.), 51, 1, 1-26 (2014) · Zbl 1300.13017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.