×

A generalized optimal fourth-order finite difference scheme for a 2D Helmholtz equation with the perfectly matched layer boundary condition. (English) Zbl 1475.65166

Summary: A crucial part of successful wave propagation related inverse problems is an efficient and accurate numerical scheme for solving the seismic wave equations. In particular, the numerical solution to a multi-dimensional Helmholtz equation can be troublesome when the perfectly matched layer (PML) boundary condition is implemented. In this paper, we present a general approach for constructing fourth-order finite difference schemes for the Helmholtz equation with PML in the two-dimensional domain based on point-weighting strategy. Particularly, we develop two optimal fourth-order finite difference schemes, optimal point-weighting 25p and optimal point-weighting 17p. It is shown that the two schemes are consistent with the Helmholtz equation with PML. Moreover, an error analysis for the numerical approximation of the exact wavenumber is provided. Based on minimizing the numerical dispersion, we implement the refined choice strategy for selecting optimal parameters and present refined point-weighting 25p and refined point-weighting 17p finite difference schemes. Furthermore, three numerical examples are provided to illustrate the accuracy and effectiveness of the new methods in reducing numerical dispersion.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
86A15 Seismology (including tsunami modeling), earthquakes

Software:

UMFPACK

References:

[1] Hustedt, B.; Operto, S.; Virieux, J., Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling, Geophys. J. Int., 157, 3, 1269-1296 (2004)
[2] Wu, T., A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation, J. Comput. Appl. Math., 311, 497-512 (2017) · Zbl 1352.65426
[3] Ihlenburg, F.; Babuška, I., Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, Internat. J. Numer. Methods Engrg., 38, 22, 3745-3774 (1995) · Zbl 0851.73062
[4] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM, Comput. Math. Appl., 30, 9, 9-37 (1995) · Zbl 0838.65108
[5] Jo, C.-H.; Shin, C.; Suh, J. H., An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator, Geophysics, 61, 2, 529-537 (1996)
[6] Chen, Z.; Cheng, D.; Feng, W.; Wu, T., An optimal 9-point finite difference scheme for the Helmholtz equation with PML, Int. J. Numer. Anal. Model., 10, 2 (2013) · Zbl 1272.65081
[7] Shin, C.; Sohn, H., A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator, Geophysics, 63, 1, 289-296 (1998)
[8] Chen, Z.; Cheng, D.; Wu, T., A dispersion minimizing finite difference scheme and preconditioned solver for the 3D Helmholtz equation, J. Comput. Phys., 231, 24, 8152-8175 (2012) · Zbl 1284.35145
[9] Pratt, R. G.; Worthington, M. H., Inverse theory applied to multi-source cross-hole tomography. Part 1: Acoustic wave-equation method, Geophys. Prospect., 38, 3, 287-310 (1990)
[10] De Zeeuw, P. M., Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl. Math., 33, 1, 1-27 (1990) · Zbl 0717.65099
[11] Erlangga, Y. A.; Oosterlee, C. W.; Vuik, C., A novel multigrid based preconditioner for heterogeneous Helmholtz problems, SIAM J. Sci. Comput., 27, 4, 1471-1492 (2006) · Zbl 1095.65109
[12] van Gijzen, M. B.; Erlangga, Y. A.; Vuik, C., Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., 29, 5, 1942-1958 (2007) · Zbl 1155.65088
[13] Chen, J.-B., A generalized optimal 9-point scheme for frequency-domain scalar wave equation, J. Appl. Geophys., 92, 1-7 (2013)
[14] Collino, F.; Monk, P. B., Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Engrg., 164, 1-2, 157-171 (1998) · Zbl 1040.78524
[15] Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129
[16] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math., 27, 4, 533-557 (1998) · Zbl 0933.35188
[17] Singer, I.; Turkel, E., A perfectly matched layer for the Helmholtz equation in a semi-infinite strip, J. Comput. Phys., 201, 2, 439-465 (2004) · Zbl 1061.65109
[18] Cheng, D.; Tan, X.; Zeng, T., A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting, Comput. Math. Appl., 73, 11, 2345-2359 (2017) · Zbl 1373.65077
[19] Harari, I.; Turkel, E., Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119, 2, 252-270 (1995) · Zbl 0848.65072
[20] Singer, I.; Turkel, E., High-order finite difference methods for the Helmholtz equation, Comput. Methods Appl. Mech. Engrg., 163, 1-4, 343-358 (1998) · Zbl 0940.65112
[21] Britt, S.; Tsynkov, S.; Turkel, E., Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes, Commun. Comput. Phys., 9, 3, 520-541 (2011) · Zbl 1364.78034
[22] Sutmann, G., Compact finite difference schemes of sixth order for the Helmholtz equation, J. Comput. Appl. Math., 203, 1, 15-31 (2007) · Zbl 1112.65099
[23] Wu, T.; Xu, R., An optimal compact sixth-order finite difference scheme for the Helmholtz equation, Comput. Math. Appl., 75, 7, 2520-2537 (2018) · Zbl 1409.78008
[24] Turkel, E.; Gordon, D.; Gordon, R.; Tsynkov, S., Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number, J. Comput. Phys., 232, 1, 272-287 (2013) · Zbl 1291.65273
[25] Dastour, H.; Liao, W., A fourth-order optimal finite difference scheme for the Helmholtz equation with PML, Comput. Math. Appl., 6, 78, 2147-2165 (2019) · Zbl 1442.65323
[26] Zeng, Y.; He, J.; Liu, Q., The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media, Geophysics, 66, 4, 1258-1266 (2001)
[27] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Rev., 24, 2, 113-136 (1982) · Zbl 0487.65055
[28] Davis, T. A.; Duff, I. S., An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., 18, 1, 140-158 (1997) · Zbl 0884.65021
[29] Davis, T. A., Algorithm 832: UMFPACK V4. 3—An unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. (TOMS), 30, 2, 196-199 (2004) · Zbl 1072.65037
[30] Alford, R. M.; Kelly, K. R.; Boore, D. M., Accuracy of finite-difference modeling of the acoustic wave equation, Geophysics, 39, 6, 834-842 (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.