×

A new efficient method for time-fractional sine-Gordon equation with the Caputo and Caputo-Fabrizio operators. (English) Zbl 1475.65158

Summary: In this work, a new efficient method called, Elzaki’s fractional decomposition method (EFDM) has been used to give an approximate series solutions to time-fractional Sine-Gordon equation. The time-fractional derivatives are described in the Caputo and Caputo-Fabrizio sense. The EFDM is based on the combination of two different methods which are: the Elzaki transform method and the Adomian decomposition method. To demonstrate the accuracy and efficiency of the proposed method, a numerical example is provided. The obtained results indicate that the EFDM is simple and practical for solving the fractional partial differential equations which appear in various fields of applied sciences.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35R11 Fractional partial differential equations

References:

[1] Khalid, N., Abbas, M., Iqbal, M. K., & Baleanu, D. (2019). A numerical algorithm based on modified extended B-spline functions for solving timefractional diffusion wave equation involving reaction and damping terms. Advances in Difference Equations,2019(378), DOI: 10.1186/s13662-0192318-7. · Zbl 1459.65198
[2] Shaba, T. G. (2020). On some new subclass of bi-univalent functions associated with the Opoola differential operator.Open Journal of Mathematical Analysis, 4(2), 74-79.
[3] Kangogo, W., Okelo, N. B., & Ongati, O. (2020). On centre properties of irreducible subalgebras of compact elementary operators.Open Journal of Mathematical Analysis, 4(2), 80-88.
[4] Khalid, N., Abbas, M., Iqbal, M. K., Singh, J., & Ismail, A. I. Md. (2020) A computational approach for solving time fractional differential equation via spline functions.Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.06.007.
[5] Akram, T., Abbas, M., Ismail, A. I., Ali, N. H. M., & Baleanu, D. (2019). Extended cubic B-splines in the numerical solution of time fractional telegraph equation.Advances in Difference Equations,2019(365), 1-20. · Zbl 1459.65193
[6] Yaseen, M., & Abbas. M. (2020). An efficient computational technique based on cubic trigonometric B-splines for time fractional Burgers’ equation.International Journal of Computer Mathematics,97(3), 725-738. · Zbl 1480.65298
[7] Yaseen, M., Abbas. M., Ismail, A. I., & Nazir, T. (2017). A cubic trigonometric B-spline collocation approach for the fractional sub-diffusion equations.Applied Mathematics and Computation,2017(293), 311-319. · Zbl 1411.65140
[8] Yaseen, M., Abbas. M., Nazir, T., & Baleanu, D. (2017). A finite difference scheme based on cubic trigonometric B-splines for a time fractional diffusion-wave equation.Advances in Difference Equations,2017(274), 118. · Zbl 1422.65195
[9] Cavalheiro, A. C. Existence results for a class of nonlinear degenerate (p,q)biharmonic operators.Open Journal of Mathematical Sciences, 4(1), 356368. · Zbl 1459.35203
[10] Mohyud-Din, S. T., Akram, T., Abbas, M., Ismail, A. I., & Ali, N. H. M. (2018). A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advectiondiffusion equation.Advances in Difference Equations,2018(109), 1-17. · Zbl 1445.65039
[11] Abdalrhman, O., Abdalmonem, A., & Tao, S. Boundedness of CaldernZygmund operators and their commutator on Morrey-Herz Spaces with variable exponents.Open Journal of Mathematical Sciences, 4(1), 323-336. · Zbl 1449.43002
[12] Khalouta, A., & Kadem, A. (2019). A new numerical technique for solving Caputo time-fractional biological population equation.AIMS Mathematics, 4(5), 1307-1319. · Zbl 1486.65218
[13] Ogunmola, B. Y., & Yinusa, A. A. Generalized dynamics on the penetration of two phase fuel spray using differential transform method.Engineering and Applied Science Letter,2(4), 33-44.
[14] Abdalrhman, O., Abdalmonem, A., & Tao, S. (2017). Higer-order commutators of parametrized marcinkewicz integrals on Herz spaces with variable exponent.Engineering and Applied Science Letter,3(1), 56-70.
[15] Amin, M., Abbas, M., Iqbal, M. K., & Baleanu, D. (2019). Nonpolynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations.Advances in Difference Equations, 2019(1), 1-22. · Zbl 1459.35372
[16] Khalid, N., Abbas, M., Iqbal, M. K., & Baleanu, D. (2020). A numerical investigation of Caputo time fractional AllenCahn equation using redefined cubic B-spline functions.Advances in Difference Equations,2020(1), 1-22. · Zbl 1482.65195
[17] Khalid, N., Abbas, M., & Iqbal, M. K. (2019). Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms.Applied Mathematics and Computation,349, 393-407. · Zbl 1429.65161
[18] Amin, M., Abbas,M., Iqbal, M. K., Ismail, A. I. M., & Baleanu, D. (2019). A fourth order non-polynomial quintic spline collocation technique for solving time fractional superdiffusion equations.Advances in Difference Equations,2019(1), 1-21. · Zbl 1487.65163
[19] Ray, S. S. (2009). Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method.Communications in Nonlinear Science and Numerical Simulation,14, 1295-1303. · Zbl 1221.65284
[20] Ganjiana, M. (2010). Solution of nonlinear fractional differential equations using homotopy analysis method.Applied Mathematical Modelling,36(6), 1634-1641. · Zbl 1193.65147
[21] Khalouta, A., & Kadem, A. (2019). A New Representation of Exact Solutions for Nonlinear Time-Fractional Wave-Like Equations with Variable Coefficients.Nonlinear Dynamics and Systems Theory,19(2), 319-330. · Zbl 1425.35214
[22] Khalouta, A., & Kadem, A. (2019). A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients.AIMS Mathematics,5(1), 1-14. · Zbl 1425.35214
[23] Khalouta, A., & Kadem, A. (2020). New analytical method for solving nonlinear time-fractional reaction-diffusion-convection problems.Revista Colombiana de Matematicas,54(1), 81-91. · Zbl 1467.35337
[24] Barone, A., Esposito, F., Magee, C. J., & Scott, A. C. (1971). Theory and Applications of the Sine-Gordon Equation.La Rivista del Nuovo Cimento, 1, 227-267.
[25] Gibbon, J. D., James, I. N., & Moroz, I. M. (1979). The Sine-Gordon Equation as a Model for a Rapidly Rotating Baroclinic Fluid.Physica Scripta,20, 402-408. · Zbl 1063.76534
[26] Kaup, D. J. (1975). Method for Solving the Sine-Gordon Equation in Laboratory Coordinates.Studies Applied Mathematics,54, 165-179. · Zbl 0301.35075
[27] Kilbas, A., Srivastava, H. M., & Trujillo, J. J. (2006).Theory and Application of Fractional Differential equations. Elsevier, Amsterdam. · Zbl 1092.45003
[28] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel.Progress in Fractional Differentiation and Applications,1(2), 73-85.
[29] Losada, J., & Nieto, J .J. (2015). Properties of a new fractional derivative without singular kernel.Progress in Fractional Differentiation and Applications,1(2), 87-92.
[30] Elzaki, T. M. (2011). The New Integral Transform “ELzaki Transform”. Global Journal of Pure and Applied Mathematics,7(1), 57-64.
[31] Khalouta, A., & Kadem, A. (2020). Solutions of nonlinear time-fractional wave-like equations with variable coefficients in the form of Mittag-Leffler functions.Thai Journal of Mathematics,18(1), 411-424. · Zbl 1479.35922
[32] Zhu, Y., Chang, Q., & Wu, S. (2005). A new algorithm for calculating Adomian polynomials.Applied Mathematics and Computation,169, 402416. · Zbl 1087.65528
[33] Wazwaz, A. M. (2009).Partial Differential Equations and Solitary Waves Theory. Springer-Verlag, Heidelberg · Zbl 1175.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.