×

On the choice of Lagrange multipliers in the iterated Tikhonov method for linear ill-posed equations in Banach spaces. (English) Zbl 1475.65109

Summary: This article is devoted to the study of nonstationary Iterated Tikhonov (nIT) type methods [M. Hanke and C. W. Groetsch, J. Optim. Theory Appl. 98, No. 1, 37–53 (1998; Zbl 0910.47005); H. W. Engl et al., Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers (1996; Zbl 0859.65054)] for obtaining stable approximations to linear ill-posed problems modelled by operators mapping between Banach spaces. Here we propose and analyse an a posteriori strategy for choosing the sequence of regularization parameters for the nIT method, aiming to obtain a pre-defined decay rate of the residual. Convergence analysis of the proposed nIT type method is provided (convergence, stability and semi-convergence results). Moreover, in order to test the method’s efficiency, numerical experiments for three distinct applications are conducted: (i) a 1D convolution problem (smooth Tikhonov functional and Banach parameter-space); (ii) a 2D deblurring problem (nonsmooth Tikhonov functional and Hilbert parameter-space); (iii) a 2D elliptic inverse potential problem.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65J10 Numerical solutions to equations with linear operators
65K10 Numerical optimization and variational techniques
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] Engl HW, Hanke M, Neubauer A. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers Group; 1996. (Mathematics and its applications; 375). MR 1408680. · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
[2] Hanke M, Groetsch CW. Nonstationary iterated Tikhonov regularization. J Optim Theory Appl. 1998;98(1):37-53. doi: 10.1023/A:1022680629327 · Zbl 0910.47005 · doi:10.1023/A:1022680629327
[3] Jin Q, Stals L. Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces. Inverse Probl. 2012;28(3):104011. · Zbl 1253.47011 · doi:10.1088/0266-5611/28/10/104011
[4] Schuster T, Kaltenbacher B, Hofmann B, et al. Regularization methods in Banach spaces. Berlin: de Gruyter; 2012. · Zbl 1259.65087 · doi:10.1515/9783110255720
[5] De Cezaro A, Baumeister J, Leitão A. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Probl Imaging. 2011;5(1):1-17. doi: 10.3934/ipi.2011.5.1 · Zbl 1221.65133 · doi:10.3934/ipi.2011.5.1
[6] Jin Q, Zhong M. Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer Math. 2014;127(3):485-513. MR 3216817 doi: 10.1007/s00211-013-0594-9 · Zbl 1297.65062 · doi:10.1007/s00211-013-0594-9
[7] Lorenz D, Schoepfer F, Wenger S. The linearized bregman method via split feasibility problems: analysis and generalizations. SIAM J Imaging Sci. 2014;7(2):1237-1262. doi: 10.1137/130936269 · Zbl 1298.68287 · doi:10.1137/130936269
[8] Boiger R, Leitão A, Svaiter BF. Range-relaxed criteria for choosing the Lagrange multipliers in nonstationary iterated Tikhonov method. IMA J Numer Anal. 2019;39(1). DOI:10.1093/imanum/dry066 · Zbl 1464.65052 · doi:10.1093/imanum/dry066
[9] Machado MP, Margotti F, Leitão A. On nonstationary iterated Tikhonov methods for ill-posed equations in Banach spaces. In: Hofmann B, Leitão A, Zubelli JP, editors. New trends in parameter identification for mathematical models. Cham: Springer International Publishing; 2018. p. 175-193. · Zbl 1471.47008
[10] Cioranescu I. Geometry of Banach spaces, duality mappings and nonlinear problems. Dordrecht: Kluwer Academic Publishers Group; 1990. (Mathematics and its applications; 62). MR 1079061. · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[11] Brezis H. Functional analysis, Sobolev spaces and partial differential equations. New York: Springer; 2011. (Universitext). MR 2759829. · Zbl 1220.46002
[12] Rockafellar RT Conjugate duality and optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1974, Lectures given at the Johns Hopkins University, Baltimore, Md., June, 1973, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 16. MR 0373611. · Zbl 0269.92001
[13] Eckstein J, Bertsekas DP. On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program. 1992;55(3):293-318. MR 1168183. doi: 10.1007/BF01581204 · Zbl 0765.90073 · doi:10.1007/BF01581204
[14] Glowinski R, Marrocco A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér.. 1975;9(R-2):41-76. MR 0388811. · Zbl 0368.65053
[15] Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl. 1976;2(1):17-40. doi: 10.1016/0898-1221(76)90003-1 · Zbl 0352.65034 · doi:10.1016/0898-1221(76)90003-1
[16] Evans LC. Partial differential equations. Providence, RI: American Mathematical Society; 1998. (Graduate studies in mathematics; 19). · Zbl 0902.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.