×

Evolutionary algorithm with multiobjective optimization technique for solving nonlinear equation systems. (English) Zbl 1475.65028

Summary: The challenge of solving nonlinear equation systems is how to locate multiple optimal solutions simultaneously in a single run. To address this issue, this paper proposes a novel algorithm by combining a diversity indicator, multi-objective optimization technique, and clustering technique. Firstly, a diversity indicator is designed to maintain the diversity of the population. Then, a K-means clustering-based selection strategy is introduced to locate the promising solutions. Finally, the local search is used to accelerate the convergence of population. The experimental results on 30 nonlinear equation systems show that the proposed algorithm is better than six state-of-the-art algorithms in terms of convergence rate and success rate.

MSC:

65H10 Numerical computation of solutions to systems of equations
68W50 Evolutionary algorithms, genetic algorithms (computational aspects)
90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming

Software:

NSGA-II; JADE
Full Text: DOI

References:

[1] Collins, C. L., Forward kinematics of planar parallel manipulators in the clifford algebra of p 2, Mech. Mach. Theory, 37, 8, 799-813 (2002) · Zbl 1062.70517
[2] Henderson, N.; Sacco, W. F.; Barufatti, N. E.; Ali, M. M., Calculation of critical points of thermodynamic mixtures with differential evolution algorithms, Ind. Eng. Chem. Res., 49, 4, 1872-1882 (2010)
[3] Hafezalkotob, A.; Hafezalkotob, A.; Sayadi, M. K., Extension of multimoora method with interval numbers: an application in materials selection, Appl. Math. Model., 40, 2, 1372-1386 (2016) · Zbl 1446.91038
[4] Pourjafari, E.; Mojallali, H., Solving nonlinear equations systems with a new approach based on invasive weed optimization algorithm and clustering, Swarm Evol. Comput., 4, 1, 33-43 (2012)
[5] Amaya, I.; Cruz, J.; Correa, R., Solution of the mathematical model of a nonlinear direct current circuit using particle swarm optimization, Dyna, 79, 172, 77-84 (2012)
[6] Xu, J.; Liao, G.; Zhu, S.; Lei, H.; So, H. C., Joint range and angle estimation using mimo radar with frequency diverse array, IEEE Trans. Signal Process., 63, 13, 3396-3410 (2015) · Zbl 1394.94908
[7] Xu, J.; Liao, G.; Zhang, Y.; Ji, H.; Lei, H., An adaptive range-angle-doppler processing approach for fda-mimo radar using three-dimensional localization, IEEE J. Sel. Top. Signal Process., PP, 99 (2017), 1-1
[8] Sayevand, K.; Jafari, H., On systems of nonlinear equations: some modified iteration formulas by the homotopy perturbation method with accelerated fourth- and fifth-order convergence, Appl. Math. Model., 40, 2, 1467-1476 (2016) · Zbl 1446.65028
[9] Ramos, H.; Monteiro, M., A new approach based on the newton’s method to solve systems of nonlinear equations, J. Comput. Appl. Math., 21, 3-13 (2017) · Zbl 1357.65062
[10] Gomesruggiero, M. A., Solving nonlinear systems of equations by means of quasi-newton methods with a nonmonotone strategy, Opt.Meth. Softw., 8, 1, 25-31 (2012)
[11] Broyden, C. G., A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19, 92, 577-593 (1965) · Zbl 0131.13905
[12] Gonzlez-Lima, M. D.; Oca, F. M.D., A newton-like method for nonlinear system of equations, Numer. Algorithms, 52, 3, 479-506 (2009) · Zbl 1181.65072
[13] Brits, R.; Engelbrecht, A.; Van den Bergh, F., Solving systems of unconstrained equations using particle swarm optimization, IEEE Int. Conf. Syst. Man Cybern., 3, 6-9 (2002)
[14] Mo, Y.; Liu, H.; Qin, W., Conjugate direction particle swarm optimization solving systems of nonlinear equations, Comput. Math. Appl., 57, 11, 1877-1882 (2009) · Zbl 1186.90125
[15] Jaberipour, M.; Khorram, E.; Karimi, B., Particle swarm algorithm for solving systems of nonlinear equations, Comput. Math. Appl., 62, 2, 566-576 (2011) · Zbl 1228.65078
[16] Jr, H. A.E. O.; Petraglia, A., Solving nonlinear systems of functional equations with fuzzy adaptive simulated annealing, Appl. Soft Comput., 13, 11, 4349-4357 (2013)
[17] Gong, W.; Wang, Y.; Cai, Z.; Wang, L., Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution, IEEE Trans. Syst. Man Cybern. Syst., 99, 1-15 (2018)
[18] Liao, Z.; Gong, W.; Yan, X.; Wang, L.; Hu, C., Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms, IEEE Trans. Syst. Man Cybern. Syst., 99, 1-12 (2018)
[19] Liao, Z.; Gong, W.; Wang, L.; Yan, X.; Hu, C., A decomposition-based differential evolution with reinitialization for nonlinear equations systems, Knowl. Based Syst., 191, Article 105312 pp. (2020)
[20] He, W.; Gong, W.; Wang, L.; Yan, X.; Hu, C., Fuzzy neighborhood-based differential evolution with orientation for nonlinear equations system, Knowl. Based Syst., 182, Article 104796 pp. (2019)
[21] Liao, Z.; Gong, W.; Wang, L., Memetic niching-based evolutionary algorithms for solving nonlinear equation system, Expert Syst. Appl., 149, Article 113261 pp. (2020)
[22] Gao, W.; Li, G.; Zhang, Q.; Luo, Y.; Wang, Z., Solving nonlinear equation systems by a two-phase evolutionary algorithm, IEEE Trans. Syst. Man Cybern. Syst., 1-12 (2019)
[23] Pourrajabian, A.; Ebrahimi, R.; Mirzaei, M.; Shams, M., Applying genetic algorithms for solving nonlinear algebraic equations, Appl. Math. Comput., 219, 24, 483-494 (2013) · Zbl 1304.65147
[24] Grosan, Crina; Abraham, Ajith, A new approach for solving nonlinear equations systems, IEEE Trans. Syst. Man Cybern. Part A, 38, 3, 698-714 (2008)
[25] Song, W.; Wang, Y.; Li, H.; Cai, Z., Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization, IEEE Trans. Evol. Comput., 414-431 (19(3), 2015,)
[26] Qin, S.; Zeng, S.; Dong, W.; Li, X., Nonlinear equation systems solved by many-objective hype, IEEE Congr. Evol. Comput. (CEC), 2015, 2691-2696 (2015)
[27] Gong, W.; Wang, Y.; Cai, Z.; Yang, S., A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems, IEEE Trans. Evol. Comput., 21, 5, 697-713 (2017)
[28] Ariyaratne, M.; Fernando, T.; Weerakoon, S., Solving systems of nonlinear equations using a modified firefly algorithm (modfa), Swarm Evol. Comput., 48, 72-92 (2019)
[29] Sun, G.; Zhang, H.; Fang, J.; Li, G.; Li, Q., A new multi-objective discrete robust optimization algorithm for engineering design, Appl. Math. Model., 53, 602-621 (2017)
[30] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput., 6, 2, 182-197 (2002)
[31] Zhang, Q.; Li, H., A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 6, 712-731 (2007)
[32] Wu, X. H.; Wu, B.; Sun, J.; Zhao, J. W., Mixed fuzzy inter-cluster separation clustering algorithm, Appl. Math. Model., 35, 10, 4790-4795 (2011) · Zbl 1228.62080
[33] Jain, A. K.; Murty, M. N.; Flynn, P. J., Data clustering: a review, ACM Comput. Surv., 31, 3, 264-323 (1999)
[34] Tsoulos, I.; Stavrakoudis, A., On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Anal. Real World Appl., 11, 4, 2465-2471 (2010) · Zbl 1193.65078
[35] Sacco, W. F.; Henderson, N., Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means, Appl. Soft Comput., 11, 8, 5424-5432 (2011)
[36] Zhang, J.; Sanderson, A. C., Jade: adaptive differential evolution with optional external archive, J. Global Optim., 13, 5, 945-958 (2009)
[37] Cheng, R.; Li, M.; Li, K.; Yao, X., Evolutionary multiobjective optimization-based multimodal optimization: fitness landscape approximation and peak detection, IEEE Trans. Evol. Comput., 22, 5, 692-706 (2018)
[38] Floudas, C., Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions, Comput. Chem. Eng., 23, 1, 963-973 (1999)
[39] Wang, C.; Luo, R.; Wu, K.; Han, B., A new filled function method for an unconstrained nonlinear equation, J. Comput. Appl. Math., 235, 6, 1689-1699 (2011) · Zbl 1213.65077
[40] Ramadas, G. C.; Fernandes, E. M.; Rocha, A. A., Multiple roots of systems of equations by repulsion merit functions, Int. Conf. Comput. Sci. Appl., 8580, 126-139 (2014)
[41] Raja, M. A.Z.; Zameer, A.; Kiani, A. K.; Shehzad, A.; Khan, M. A., Nature-inspired computational intelligence integration with nelder-mead method to solve nonlinear benchmark models, Neural Comput. Appl., 29, 4, 1169-1193 (2018)
[42] Qu, B. Y.; Suganthan, P. N.; Liang, J. J., Differential evolution with neighborhood mutation for multimodal optimization, IEEE Trans. Evol. Comput., 16, 5, 601-614 (2012)
[43] Zhang, X.; Wan, Q.; Fan, Y., Applying modified cuckoo search algorithm for solving systems of nonlinear equations, Neural Comput. Appl., 31, 2, 553-576 (2019)
[44] Raja, M. A.Z.; Kiani, A. K.; Shehzad, A.; Zameer, A., Memetic computing through bio-inspired heuristics integration with sequential quadratic programming for nonlinear systems arising in different physical models, Springerplus, 5, 1, 2063 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.