×

Probabilistic universality in two-dimensional dynamics. (English) Zbl 1475.37046

Let \(F(x,y)=(f(x)-\epsilon(x,y),x)\) be an infinite renormalizable Hénon-like map defined on the unit square \(B^0=[0,1]^2\), where \(f\) is a unimodal map with non-degenerate critical point and the perturbation \(\epsilon\) is small enough. Consequently, there exists a nest of \(2^n\)-periodic (under \(F\)) quadrilateral boxes \(B^0 \supset B^1 \supset B^2\supset \cdots\) shrinking to the Cantor attractor \(\mathcal{O}_F=\bigcap_{n=0}^{\infty}\bigcup_{i=0}^{2^n-1}B_i^n\), where the orbit \(\mathcal{B}^n=\{B_i^n=F^i(B^n):0\leq i\leq 2^{n-1}\}\) represents the \(n\)-th renormalization level for \(F\). Moreover, it is known that there exists a unique invariant measure \(\mu\) supported on the attractor. On the other hand, \(\mathcal{O}_F\) is topologically conjugate to the attractor \(\mathcal{O}_{f_{*}}\) of the one-dimensional period-doubling renormalization fixed point \(f_*\) via a suitable conjugation \(h\).
In [A. De Carvalho et al., J. Stat. Phys. 121, No. 5–6, 611–669 (2005; Zbl 1098.37039)], it was proved that the universality and rigidity phenomena, discovered by M.J. Feigenbaum in [J. Stat. Phys. 19, 25–52 (1978; Zbl 0509.58037)], are not valid in the setting of higher-dimensional systems, taking the Hénon family as counterexample. Nevertheless, in the present paper the authors show that the small scale universality is valid for dissipative Hénon maps from a probabilistic point of view.
Indeed, the two main results of the paper are:
(i) Theorem 1. The geometry of the Cantor attractor of a strongly dissipative infinitely renormalizable Hénon-like map \(F\) is probabilistically universal, that is, for the Cantor attractor \(\mathcal{O}_F\) there exists \(\theta<1\) such that \(\mu(S_n(\theta^n))=\mu(\{B\in \mathcal{B}^n: B\, \text{has}\, \epsilon\text{-precision}\})\geq 1- \theta^n,\) where the \(\epsilon\)-precision is defined as follows: if \(B\in \mathcal{B}^n\), and \(B_1, B_2\in \mathcal{B}^{n+1}\) with \(B_1,B_2\subset B\), and if \(I\), \(I_1\), and \(I_2\) are the corresponding pieces of \(f_*\) by conjugation, we say that \(B\) has \(\epsilon\)-precision if after applying an affine map \(A\) we have that the (Hausdorff) distances \(d_H(I,A(B)), d_H(I_1,A(B_1)), d_H(I_2,A(B_2))\) are less than or equal to \(\epsilon\cdot\mathrm{diam}(I)\);
(ii) Theorem 2. The Cantor attractor of a dissipative infinitely renormalizable \(F\) is probabilistically rigid, that is, there exists \(\beta>0\) and a sequence \(X_1\subset X_2\subset \dots\subset \mathcal{O}_{F}\) such that the map \(h:X_N\rightarrow h(X_N)\subset \mathcal{O}_{f_{*}}\) is \((1+\beta)\)-differentiable and \(\mu(X_N)\rightarrow 1\).
As a consequence of Theorem 2, the authors also prove that the Hausdorff dimension is universal in the sense that \(HD_{\mu(\mathcal{O})_F}=HD_{\mu_*(\mathcal{O}_{f_*})}\), where \(\mu*\) is the invariant measure associated to \(\mathcal{O}_{f_*}\).
Although the reader is appropriately guided by the authors, we must mention that the development is extremely technical, with a very deep and fascinating richness from the dynamical point of view.

MSC:

37E20 Universality and renormalization of dynamical systems
37E15 Combinatorial dynamics (types of periodic orbits)
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37A05 Dynamical aspects of measure-preserving transformations

References:

[1] Benedicks, M.; Carleson, L., The dynamics of the Hénon map, Ann. Math., 133, 1, 73-169 (1991) · Zbl 0724.58042 · doi:10.2307/2944326
[2] Birkhoff, C.; Martens, M.; Tresser, CP, On the scaling structure for period doubling, Asterisque, 286, 167-186 (2003) · Zbl 1156.37310
[3] Collet, P.; Eckmann, JP; Koch, H., Period doubling bifurcations for families of maps on \({\mathbb{R}}^n\), J. Stat. Phys., 25, 1-15 (1980) · Zbl 0521.58041 · doi:10.1007/BF01008475
[4] Chandramouli, VVMS; Martens, M.; de Melo, W.; Tresser, CP, Chaotic period doubling, Ergod. Theory Dyn. Syst., 29, 381-418 (2009) · Zbl 1160.37369 · doi:10.1017/S0143385708080371
[5] Cvitanovic, P., Universality in Chaos (1989), Bristol: Adam Hilger, Bristol · Zbl 0683.58004
[6] Coullet, P.; Tresser, C., Itération d’endomorphismes et groupe de renormalisation, J. Phys. Colloque C, 539, C5-25 (1978) · Zbl 0402.54046
[7] de Carvalho, A.; Lyubich, M.; Martens, M., Renormalization in the Hénon family, I: universality but non-rigidity, J. Stat. Phys., 121, 5-6, 611-669 (2005) · Zbl 1098.37039 · doi:10.1007/s10955-005-8668-4
[8] de Faria, E.; de Melo, W.; Pinto, A., Global hyperbolicity of renormalization for \(C^r\) unimodal mappings, Ann. Math., 164, 3, 731-824 (2006) · Zbl 1129.37021 · doi:10.4007/annals.2006.164.731
[9] de Melo, W.; van Strien, S., One-Dimensional Dynamics (1993), Berlin: Springer, Berlin · Zbl 0791.58003 · doi:10.1007/978-3-642-78043-1
[10] Epstein, H., New proofs of the existence of the Feigenbaum functions, Commun. Math. Phys., 106, 395-426 (1986) · Zbl 0608.30031 · doi:10.1007/BF01207254
[11] Feigenbaum, MJ, Quantitative universality for a class of non-linear transformations, J. Stat. Phys., 19, 25-52 (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[12] Gambaudo, J-M; van Strien, S.; Tresser, C., Hénon-like maps with strange attractors: there exist \(C^\infty\) Kupka-Smale diffeomorphisms on \(S^2\) with neither sinks nor sources, Nonlinearity, 2, 287-304 (1989) · Zbl 0707.58030 · doi:10.1088/0951-7715/2/2/005
[13] Jones, P., Rectifiable sets and the traveling salesman problem, Invent. Math., 102, 1, 1-16 (1990) · Zbl 0731.30018 · doi:10.1007/BF01233418
[14] Lanford, OE III, A computer assited proof of the Feigenbaum conjectures, Bull. Am. Math. Soc. New Ser., 6, 427-434 (1982) · Zbl 0487.58017 · doi:10.1090/S0273-0979-1982-15008-X
[15] Lyubich, M., Feigenbaum-Coullet-Tresser Universality and Milnor’s Hairiness Conjecture, Ann. Math., 149, 319-420 (1999) · Zbl 0945.37012 · doi:10.2307/120968
[16] Lyubich, M., Martens, M.: Renormalization in the Hénon family, II. The Heteroclinic Web, IMS Stony Brook preprint 08-2 and accepted for publication in Invent. Math
[17] Lyubich, M., Martens, M.: Renormalization of Hénon maps. In: M.M. Peixoto, A.A. Pinto, D.A. Rand (Eds.) Dynamics, Games and Science I, Springer Proceedings in Mathematics 1, pp. 597-618 (2011) · Zbl 1253.37046
[18] Martens, M., Distortion results and invariant cantor sets for unimodal maps, Ergod. Theory Dyn. Syst., 14, 331-349 (1994) · Zbl 0809.58026 · doi:10.1017/S0143385700007902
[19] Martens, M., The periodic points of renormalization, Ann. Math., 147, 543-584 (1998) · Zbl 0936.37017 · doi:10.2307/120959
[20] McMullen, C., Renormalization and 3-manifolds which fiber over the circle (1996), Princeton: Princeton University Press, Princeton · Zbl 0860.58002 · doi:10.1515/9781400865178
[21] Oseledec, V. I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow. Math. Soc., 19, 197-231 (1969) · Zbl 0236.93034
[22] Sullivan, D.: Bounds, quadratic differentials, and renormalization conjectures. AMS Centennial Publications. 2: Mathematics into Twenty-first Century (1992) · Zbl 0936.37016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.