×

On torsion of superelliptic Jacobians. (English. French summary) Zbl 1475.14054

Summary: We prove a result describing the structure of a specific subgroup of the \(m\)-torsion of the Jacobian of a general superelliptic curve \(y^m=F(x)\), generalizing the structure theorem for the \(2\)-torsion of a hyperelliptic curve. We study existence of torsion on curves of the form \(y^q=x^p-x+a\) over finite fields of characteristic \(p\). We apply those results to bound from below the Mordell-Weil ranks of Jacobians of certain superelliptic curves over \(\mathbb{Q}\).

MSC:

14H40 Jacobians, Prym varieties
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14H45 Special algebraic curves and curves of low genus

References:

[1] Coleman, Robert F., Effective Chabauty, Duke Math. J., 52, 3, 765-770 (1985) · Zbl 0588.14015 · doi:10.1215/S0012-7094-85-05240-8
[2] Cornell, Gary; Silverman, Joseph H., Arithmetic geometry, xvi+353 p. pp. (1986), Springer · Zbl 0596.00007 · doi:10.1007/978-1-4613-8655-1
[3] Elkies, Noam D., \( \mathbb{Z}^{28}\) in \({E}(\mathbb{Q})\), etc. (2006)
[4] Hartshorne, Robin, Algebraic geometry, 52, xvi+496 p. pp. (1977), Springer · Zbl 0531.14001
[5] Hindry, Marc; Silverman, Joseph H., Diophantine geometry, An introduction, 201, xiv+558 p. pp. (2000), Springer · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[6] Ireland, Kenneth; Rosen, Michael, A classical introduction to modern number theory, 84, xiv+389 p. pp. (1990), Springer · Zbl 0712.11001 · doi:10.1007/978-1-4757-2103-4
[7] Jędrzejak, Tomasz, On the torsion of the Jacobians of superelliptic curves \(y^q = x^p+a\), J. Number Theory, 145, 402-425 (2014) · Zbl 1312.11055 · doi:10.1016/j.jnt.2014.06.013
[8] Joshi, Kirti; Tzermias, Pavlos, On the Coleman-Chabauty bound, C. R. Math. Acad. Sci. Paris, 329, 6, 459-463 (1999) · Zbl 0985.11029 · doi:10.1016/S0764-4442(00)80041-5
[9] Klagsbrun, Zev; Sherman, Travis; Weigandt, James, The Elkies curve has rank 28 subject only to GRH, Math. Comp., 88, 316, 837-846 (2019) · Zbl 1469.11171 · doi:10.1090/mcom/3348
[10] Mestre, Jean-François, Courbes elliptiques de rang \(\ge 11\) sur \({\bf{Q}}(t)\), C. R. Math. Acad. Sci. Paris, 313, 3, 139-142 (1991) · Zbl 0745.14013
[11] Néron, André, Propriétés arithmétiques de certaines familles de courbes algébriques, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, 481-488 (1956), Erven P. Noordhoff N.V.; North-Holland · Zbl 0074.15901
[12] Park, Jennifer; Poonen, Bjorn; Voight, John; Wood, Melanie Matchett, A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc., 21, 9, 2859-2903 (2019) · Zbl 1469.11173 · doi:10.4171/JEMS/893
[13] Poonen, Bjorn, Lectures on rational points on curves (2006), Department of Mathematics, University of California · Zbl 1173.11040
[14] Poonen, Bjorn; Schaefer, Edward F., Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math., 488, 141-188 (1997) · Zbl 0888.11023
[15] Serre, Jean-Pierre, Lie algebras and Lie groups, 1500, viii+168 p. pp. (2006), Springer · Zbl 0742.17008
[16] Shioda, Tetsuji, Genus two curves over \({\bf{Q}}(t)\) with high rank, Comment. Math. Univ. St. Pauli, 46, 1, 15-21 (1997) · Zbl 0999.11030
[17] Stichtenoth, Henning, Algebraic function fields and codes, 254, xiv+355 p. pp. (2009), Springer · Zbl 1155.14022
[18] Tèĭt, D. T.; Šafarevič, Igor R., The rank of elliptic curves, Dokl. Akad. Nauk SSSR, 175, 770-773 (1967) · Zbl 0168.42201
[19] Ulmer, Douglas, Elliptic curves with large rank over function fields, Ann. Math., 155, 1, 295-315 (2002) · Zbl 1109.11314 · doi:10.2307/3062158
[20] Ulmer, Douglas, \({L}\)-functions with large analytic rank and abelian varieties with large algebraic rank over function fields, Invent. Math., 167, 2, 379-408 (2007) · Zbl 1110.11019 · doi:10.1007/s00222-006-0018-x
[21] Ulmer, Douglas, Arithmetic of \({L}\)-functions, 18, Elliptic curves over function fields, 211-280 (2011), American Mathematical Society · Zbl 1323.11037
[22] Ulmer, Douglas, Arithmetic geometry over global function fields, Curves and Jacobians over function fields, 283-337 (2014), Springer · Zbl 1384.11077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.