×

On the average value of a function of the residual index. (English) Zbl 1475.11171

Akbary, Amir (ed.) et al., Geometry, algebra, number theory, and their information technology applications. Toronto, Canada, June, 2016, and Kozhikode, India, August, 2016. Cham: Springer. Springer Proc. Math. Stat. 251, 19-37 (2018).
Summary: For a prime pand a positive integer arelatively prime to p, we denote \(i_a(p)\) as the index of the subgroup generated by ain the multiplicative group \((\mathbb{Z}/p\mathbb{Z})^{\times}\). Under certain conditions on the arithmetic function \(f(n)\), we prove that the average value of \(f(i_a(p))\), as aand pvary, is \[ \sum\limits_{d=1}^{\infty}\frac{g(d)}{d\varphi (d)}, \] where \(g(n)=\sum_{d\mid n}\mu (d)f(n/d)\) is the Möbius inverse of fand \(\varphi (n)\) is the Euler function.
For the entire collection see [Zbl 1403.11002].

MSC:

11N37 Asymptotic results on arithmetic functions
11A07 Congruences; primitive roots; residue systems
Full Text: DOI

References:

[1] Samuel S. Wagstaff Jr., Pseudoprimes and a generalization of Artin’s conjecture, Acta Arith. 41 (1982), no. 2, 141-150 · Zbl 0496.10001 · doi:10.4064/aa-41-2-141-150
[2] P. J. Stephens, Prime divisors of second order linear recurrences. II, J. Number Theory 8 (1976), no. 3, 333-345. MR0417082 · Zbl 0334.10019 · doi:10.1016/0022-314X(76)90011-1
[3] F. Pappalardi, On Hooley’s theorem with weights, Rend. Sem. Mat. Univ. Politec. Torino 53 (1995), no. 4, 375-388. Number theory, II (Rome, 1995). MR1452393 · Zbl 0883.11042
[4] Pieter Moree, Artin’s primitive root conjecture—a survey, Integers 12 (2012), no. 6, 1305-1416. MR3011564 · Zbl 1271.11002
[5] R. R. Laxton, On groups of linear recurrences. I, Duke Math. J. 36 (1969), 721-736. MR0258781 · Zbl 0226.10010 · doi:10.1215/S0012-7094-69-03687-4
[6] Nathan Jones, Averages of elliptic curve constants, Math. Ann. 345 (2009), no. 3, 685-710. MR2534114 · Zbl 1177.14067 · doi:10.1007/s00208-009-0373-1
[7] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR568909 · Zbl 0423.10001
[8] P. X. Gallagher, The large sieve, Mathematika 14 (1967), 14-20. MR0214562 · Zbl 0163.04401 · doi:10.1112/S0025579300007968
[9] John Friedlander and Henryk Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR2647984 · Zbl 1226.11099
[10] O. M. Fomenko, On the class numbers of indefinite binary quadratic forms and the residual indices of integers modulo a prime \(p\), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), no. Anal. Teor. Chisel i Teor. Funkts. 18, 179-199, 231-232 (Russian, with Russian summary); English transl., J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3685-3698. MR1937377 · Zbl 1077.11068
[11] O. M. Fomenko, Class numbers of indefinite binary quadratic forms, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 276 (2001), no. Anal. Teor. Chisel i Teor. Funkts. 17, 312-333, 354-355 (Russian, with Russian summary); English transl., J. Math. Sci. (N. Y.) 118 (2003), no. 1, 4918-4932. MR1850375 · Zbl 1130.11316
[12] Adam Tyler Felix and M. Ram Murty, A problem of Fomenko’s related to Artin’s conjecture, Int. J. Number Theory 8 (2012), no. 7, 1687-1723. MR2968946 · Zbl 1264.11084
[13] Chantal David and Francesco Pappalardi, Average Frobenius distributions of elliptic curves, Internat. Math. Res. Notices 4 (1999), 165-183. MR1677267 · Zbl 0934.11033
[14] Alina Carmen Cojocaru and M. Ram Murty, An introduction to sieve methods and their applications, London Mathematical Society Student Texts, vol. 66, Cambridge University Press, Cambridge, 2006. MR2200366 · Zbl 1121.11063
[15] Eric Bach, Richard Lukes, Jeffrey Shallit, and H. C. Williams, Results and estimates on pseudopowers, Math. Comp. 65 (1996), no. 216, 1737-1747. MR1355005 · Zbl 0853.11103 · doi:10.1090/S0025-5718-96-00762-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.