×

Distribution and non-vanishing of special values of \(L\)-series attached to Erdős functions. (English) Zbl 1475.11160

Let \(q\) be a positive integer and \(f\) be a \(q\)-periodic arithmetic function such that \(f(n)\in\{-1,1\}\) when \(q\not|n\) and \(f(n)=0\) otherwise. Erdős conjectured that \(\sum_{n=1}^{\infty}f(n)/n\neq 0\) whenever this series converges (cf. [A. E. Livingston, Can. Math. Bull. 8, 413–432 (1965; Zbl 0129.02801)]). The author shows here that Erdős conjecture holds with “probability” 1. This improves on a result by T. Chatterjee and M. R. Murty [Pac. J. Math. 275, No. 1, 103–113 (2015; Zbl 1333.11084)].
A rational-valued \(q\)-period arithmetic function \(f\) is called an Erdős function \(\mod q\) if \(f(n)\in\{-1,1\}\) when \(q\not|n\) and \(f(n)=0\) otherwise and \(\sum_{a=1}^{q}f(a)=0\). The \(L\)-series associated to \(f\) is \(L(s,f)=\sum_{n=1}^{\infty}f(n)/n^s\). The author also obtains the characteristic function of the limiting distribution of \(L(k,f)\) for any positive integer \(k\) and Erdős function \(f\) with the same parity as \(k\).

MSC:

11M41 Other Dirichlet series and zeta functions
11M45 Tauberian theorems

References:

[1] Baker, A., Birch, B. J. and Wirsing, E. A., On a problem of Chowla, J. Number Theory5 (1973) 224-236. · Zbl 0267.10065
[2] Bayad, A. and Raouj, A., Arithmetic of higher-dimensional Dedekind-Rademacher sums, J. Number Theory132 (2012) 332-347. · Zbl 1247.11058
[3] Barban, M. B., Linniks large sieve and a limit theorem for the class number of ideals of an imaginary quadratic field, Izv. Akad. Nauk SSSR Ser. Mat.26(4) (1962) 573-580. · Zbl 0108.04401
[4] M. B. Barban, The large sieve method and its application to number theory, Uspekhi Mat. Nauk21(1) (1966) 51-102, Russian Math. Surveys21(1) (1966) 49-103. · Zbl 0234.10031
[5] Billingsley, P., Probability and Measure, 3rd edition (Wiley, 2008). · Zbl 0822.60002
[6] Chatterjee, T. and Murty, M. R., On a conjecture of Erdős and certain Dirichlet series, Pacific J. Math.275(1) (2015) 103-113. · Zbl 1333.11084
[7] Chatterjee, T., Murty, M. R. and Pathak, S., A vanishing criterion for Dirichlet series with periodic coefficients, in Number Theory Related to Modular Curves-Momose Memorial Volume, , Vol. 701 (American Mathematical Society, Providence, RI, 2018), pp. 69-80. · Zbl 1440.11158
[8] Chowla, S., A special infinite series, Nor. Vidensk. Selsk. Forth.37 (1964) 85-87. · Zbl 0223.10002
[9] Chowla, S. and Erdős, P., A theorem on the distribution of the values of L-functions, J. Indian Math. Soc.15 (1951) 11-18. · Zbl 0043.04602
[10] Elliot, P. D. T. A., Probabilistic Number Theory II, Central Limit Theorems (Springer-Verlag, New York, 1980). · Zbl 0431.10030
[11] Granville, A. and Soundararajan, K., The distribution of values of \(L(1, \chi_d)\), Geom. Funct. Anal.13(5) (2013) 992-1028. · Zbl 1044.11080
[12] Hardy, G. H. and Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. London Math. Soc.17(2) (1918) 75-115. · JFM 46.0198.04
[13] Hurwitz, A., Einige eigenschaften der dirichlet funktionen \(F(s) = \sum(D / n) n^{- s}\), die bei der Bestimmung der Klassenzahlen Binärer quadratischer Formen auftreten, Z. Math. Phys.27 (1882) 86-101. · JFM 14.0371.01
[14] Landau, E., Handbuch der Lehre yon der Verteilung der Primzahlen, Vol. 1 & 2 (Teubner, Leipzig, 1909). · JFM 40.0232.09
[15] Livingston, A., The series \(\sum_{n = 1}^\infty f(n) / n\) for periodic \(f\), Canad. Math. Bull.8(4) (1965) 413-432. · Zbl 0129.02801
[16] Murty, M. R. and Murty, V. K., Transcendental values of class group L-functions, Math. Ann.351 (2011) 835-855. · Zbl 1281.11071
[17] Murty, M. R. and Saradha, N., Transcendental values of the digamma function, J. Number Theory125(2) (2007) 298-318. · Zbl 1222.11097
[18] Murty, M. R. and Saradha, N., Special values of the polygamma functions, Int. J. Number Theory5(3) (2009) 681-714. · Zbl 1189.11039
[19] Murty, M. R. and Saradha, N., Euler-Lehmer constants and a conjecture of Erdös, J. Number Theory130 (2010) 2671-2682. · Zbl 1204.11114
[20] Okada, T., On a certain infinite series for a periodic arithmetical function, Acta Arith.40(2) (1982) 143-153. · Zbl 0402.10035
[21] Pólya, G. and Szegő, G., Problems and Theorems in Analysis I (Springer, 1978). · Zbl 0338.00001
[22] Rademacher, H., Zur theorie der dedekindschen summen, Math. Z.63 (1955/56) 445-463. · Zbl 0071.04201
[23] Robbins, H., A remark on Stirling’s formula, Amer. Math. Monthly62(1) (1955) 26-29. · Zbl 0068.05404
[24] Tijdeman, R., Some applications of Diophantine approximation, in Number Theory for the Millennium III, eds. Bennett, M. A.et al., (AK Peters, USA, 2002) pp. 261-284. · Zbl 1045.11022
[25] Zagier, D., Higher dimensional dedekind sums, Math. Ann.202 (1973) 149-172. · Zbl 0237.10025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.