×

A quasicontinuum theory for the nonlinear mechanical response of general periodic truss lattices. (English) Zbl 1474.74038

Summary: We present a framework for the efficient, yet accurate description of general periodic truss networks based on concepts of the quasicontinuum (QC) method. Previous research in coarse-grained truss models has focused either on simple bar trusses or on two-dimensional beam lattices undergoing small deformations. Here, we extend the truss QC methodology to nonlinear deformations, general periodic beam lattices, and three dimensions. We introduce geometric nonlinearity into the model by using a corotational beam description at the level of individual truss members. Coarse-graining is achieved by the introduction of representative unit cells and an affine interpolation analogous to traditional QC. General periodic lattices defined by the periodic assembly of a single unit cell are modeled by retaining all unique degrees of freedom of the unit cell (identified by a lattice decomposition into simple Bravais lattices) at each macroscopic point in the simulation, and interpolating each degree of freedom individually. We show that this interpolation scheme accurately captures the homogenized properties of periodic truss lattices for uniform deformations. In order to showcase the efficiency and accuracy of the method, we perform simulations to predict the brittle fracture toughness of multiple lattice architectures and compare them to results obtained from significantly more expensive discrete truss simulations. Finally, we demonstrate the applicability of the method for nonlinear elastic truss lattices undergoing finite deformations. Overall, the new technique shows convincing agreement with exact, discrete results for most lattice architectures, and offers opportunities to reduce computational expenses in structural lattice simulations and thus to efficiently extract the effective mechanical performance of discrete networks.

MSC:

74E15 Crystalline structure

Software:

PETSc; TAO

References:

[1] Amelang, J.; Venturini, G.; Kochmann, D., Summation rules for a fully nonlocal energy-based quasicontinuum method, J. Mech. Phys. Solids, 82, 378-413 (2015)
[2] Asada, T.; Tanaka, Y.; Ohno, N., Two-scale and full-scale analyses of elastoplastic honeycomb blocks subjected to flat-punch indentation, Int. J. Solids Struct., 46, 7, 1755-1763 (2009) · Zbl 1219.74038
[3] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; Curfman McInnes, L.; Rupp, K.; Smith, B. F.; Zampini, S.; H., Z.; Zhang, H., PETSc Users Manual, Technical Report ANL-95/11 - Revision 3.8 (2017), Argonne National Laboratory
[4] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; May, D. A.; Curfman McInnes, L.; Rupp, K.; Smith, B. F.; Zampini, S.; H., Z.; Zhang, H., PETSc Web page (2017)
[5] Balay, S.; Gropp, W. D.; Curfman McInnes, L.; Smith, B. E., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[6] Battini, J.-M.; Pacoste, C., On the choice of the linear element for corotational triangular shells, Comput. Methods Appl. Mech. Eng., 195, 44, 6362-6377 (2006) · Zbl 1126.74045
[7] Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O., Approaching theoretical strength in glassy carbon nanolattices, Nat. Mater., 15, 438-443 (2016)
[8] Beex, L.; Kerfriden, P.; Rabczuk, T.; Bordas, S., Quasicontinuum-based multiscale approaches for plate-like beam lattices experiencing in-plane and out-of-plane deformation, Comput. Methods Appl. Mech. Eng., 279, 348-378 (2014)
[9] Beex, L.; Peerlings, R.; Geers, M., Central summation in the quasicontinuum method, J. Mech. Phys. Solids, 70, 242-261 (2014) · Zbl 1328.74004
[10] Beex, L.; Peerlings, R.; Geers, M., A multiscale quasicontinuum method for dissipative lattice models and discrete networks, J. Mech. Phys. Solids, 64, 154-169 (2014)
[11] Beex, L.; Peerlings, R.; Geers, M., A multiscale quasicontinuum method for lattice models with bond failure and fiber sliding, Comput. Methods Appl. Mech. Eng., 269, 108-122 (2014) · Zbl 1296.74047
[12] Beex, L. A.A.; Peerlings, R. H.J.; Geers, M. G.D., A quasicontinuum methodology for multiscale analyses of discrete microstructural models, Int. J. Numer. Methods Eng., 87, 7, 701-718 (2011) · Zbl 1242.74201
[13] Bensoussan, A.; Lions, J.; Papanicolaou, G., Asymptotic analysis for periodic structures, Studies in Mathematics and Its Applications (1978), North-Holland Publishing Company · Zbl 0411.60078
[14] Berger, J. B.; Wadley, H. N.G.; McMeeking, R. M., Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness, Nature, 543, 533 (2017)
[15] Chen, J.; Huang, Y.; Ortiz, M., Fracture analysis of cellular materials: a strain gradient model, J. Mech. Phys. Solids, 46, 5, 789-828 (1998) · Zbl 1056.74508
[16] Choi, S.; Sankar, B. V., A micromechanical method to predict the fracture toughness of cellular materials, Int. J. Solids Struct., 42, 5, 1797-1817 (2005) · Zbl 1120.74785
[17] Cioranescu, D.; Donato, P., An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications (1999), Oxford University Press · Zbl 0939.35001
[18] Crisfield, M., A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements, Comput. Methods Appl. Mech. Eng., 81, 2, 131-150 (1990) · Zbl 0718.73085
[19] Crisfield, M., Non-linear Finite Element Analysis of Solids and Structures, vol. 2 (1997), Wiley · Zbl 0855.73001
[20] Cui, X.; Xue, Z.; Pei, Y.; Fang, D., Preliminary study on ductile fracture of imperfect lattice materials, Int. J. Solids Struct., 48, 25, 3453-3461 (2011)
[21] Desmoulins, A.; Kochmann, D., Local and nonlocal continuum modeling of inelastic periodic networks applied to stretching-dominated trusses, Comput. Methods Appl. Mech. Eng., 313, 85-105 (2017) · Zbl 1439.74330
[22] Dobson, M.; Elliott, R. S.; Luskin, M.; Tadmor, E. B., A multilattice quasicontinuum for phase transforming materials: cascading cauchy born kinematics, J. Comput.-Aided Mater. Des., 14, 1, 219-237 (2007)
[23] Eidel, B.; Stukowski, A., A variational formulation of the quasicontinuum method based on energy sampling in clusters, J. Mech. Phys. Solids, 57, 87-108 (2009) · Zbl 1298.74011
[24] Fan, H.; Jin, F.; Fang, D., Nonlinear mechanical properties of lattice truss materials, Mater. Des., 30, 3, 511-517 (2009)
[25] Feyel, F., A multilevel finite element method (fe2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Eng., 192, 28, 3233-3244 (2003) · Zbl 1054.74727
[26] Feyel, F.; Chaboche, J.-L., Fe2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials, Comput. Methods Appl. Mech. Eng., 183, 3, 309-330 (2000) · Zbl 0993.74062
[27] Fleck, N. A.; Qiu, X., The damage tolerance of elastic brittle, two-dimensional isotropic lattices, J. Mech. Phys. Solids, 55, 3, 562-588 (2007) · Zbl 1253.74091
[28] Geymonat, G.; Müller, S.; Triantafyllidis, N., Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal., 122, 231-290 (1993) · Zbl 0801.73008
[29] Gibson, L.; Ashby, M., Cellular Solids: Structure and Properties, Cambridge Solid State Science Series (1997), Cambridge University Press
[30] Gunzburger, M.; Zhang, Y., A quadrature-rule type approximation to the quasi-continuum method, Multiscale Model. Simul., 8, 2, 571-590 (2010) · Zbl 1188.70046
[31] Gurtner, G.; Durand, M., Stiffest elastic networks, Proc. R. Soc. Lond. A, 470, 2164 (2014) · Zbl 1371.74230
[32] Hill, R., Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[33] Hutchinson, R.; Fleck, N., The structural performance of the periodic truss, J. Mech. Phys. Solids, 54, 4, 756-782 (2006) · Zbl 1120.74623
[34] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 9, 1899-1923 (2001) · Zbl 1002.74008
[35] Kochmann, D. M.; Amelang, J. A., The quasicontinuum method: theory and applications, (Weinberger, C. R.; Tucker, G. J., Multiscale Materials Modeling for Nanomechanics (2016), Springer: Springer New York), 159-195
[36] Lipperman, F.; Ryvkin, M.; Fuchs, M. B., Fracture toughness of two-dimensional cellular material with periodic microstructure, Int. J. Fract., 146, 4, 279-290 (2007) · Zbl 1264.74221
[37] Meza, L. R.; Das, S.; Greer, J. R., Strong, lightweight, and recoverable three-dimensional ceramic nanolattices, Science, 345, 6202, 1322-1326 (2014)
[38] Meza, L. R.; Phlipot, G. P.; Portela, C. M.; Maggi, A.; Montemayor, L. C.; Comella, A.; Kochmann, D. M.; Greer, J. R., Reexamining the mechanical property space of three-dimensional lattice architectures, Acta Mater., 140, 424-432 (2017)
[39] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech., 72, 4, 300-317 (2002) · Zbl 1032.74010
[40] Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R., Insensitivity to flaws leads to damage tolerance in brittle architected meta-Materials, Sci. Rep., 6, 20570 (2016)
[41] Moré, J. J.; Thuente, D. J., Line search algorithms with guaranteed sufficient decrease, ACM Trans. Math. Softw., 20, 286-307 (1994) · Zbl 0888.65072
[42] Munson, T.; Sarich, J.; Wild, S.; Benson, S.; McInnes, L. C., TAO 2.0 Users Manual, Technical Report, ANL/MCS-TM-322 (2012), Mathematics and Computer Science Division, Argonne National Laboratory
[43] Okumura, D.; Ohno, N.; Noguchi, H., Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids, J. Mech. Phys. Solids, 52, 3, 641-666 (2004) · Zbl 1106.74351
[44] OMasta, M.; Dong, L.; St-Pierre, L.; Wadley, H.; Deshpande, V., The fracture toughness of octet-truss lattices, J. Mech. Phys. Solids, 98, 271-289 (2017)
[45] Pal, R. K.; Ruzzene, M.; Rimoli, J. J., A continuum model for nonlinear lattices under large deformations, Int. J. Solids Struct., 96, 300-319 (2016)
[46] Quintana Alonso, I.; Fleck, N., Compressive response of a sandwich plate containing a cracked diamond-celled lattice, J. Mech. Phys. Solids, 57, 1545-1567 (2009) · Zbl 1371.74253
[47] Quintana Alonso, I.; Fleck, N. A., Damage tolerance of an elastic-brittle diamond-celled honeycomb, Scr. Mater., 56, 8, 693-696 (2007)
[48] Quintana-Alonso, I.; Mai, S.; Fleck, N.; Oakes, D.; Twigg, M., The fracture toughness of a cordierite square lattice, Acta Mater., 58, 1, 201-207 (2010)
[49] Rokoš, O.; Beex, L.; Zeman, J.; Peerlings, R., A variational formulation of dissipative quasicontinuum methods, Int. J. Solids Struct., 102-103, 214-229 (2016)
[50] Rokoš, O.; Peerlings, R.; Zeman, J., extended variational quasicontinuum methodology for lattice networks with damage and crack propagation, Comput. Methods Appl. Mech. Eng., 320, 769-792 (2017) · Zbl 1439.74463
[51] Romijn, N. E.; Fleck, N. A., The fracture toughness of planar lattices: imperfection sensitivity, J. Mech. Phys. Solids, 55, 12, 2538-2564 (2007) · Zbl 1159.74416
[52] Ryvkin, M.; Nuller, B., Solution of quasi-periodic fracture problems by the representative cell method, Comput. Mech., 20, 1, 145-149 (1997) · Zbl 0887.73053
[53] Schmidt, I.; Fleck, N., Ductile fracture of two-dimensional cellular structures - dedicated to prof. dr.-Ing. D. Gross on the occasion of his 60th birthday, Int. J. Fract., 111, 4, 327-342 (2001)
[54] Sih, G. C.; Paris, P. C.; Irwin, G. R., On cracks in rectilinearly anisotropic bodies, Int. J. Fract.Mech., 1, 3, 189-203 (1965)
[55] Slepyan, L.; Ayzenberg-Stepanenko, M., Some surprising phenomena in weak-bond fracture of a triangular lattice, J. Mech. Phys. Solids, 50, 8, 1591-1625 (2002) · Zbl 1116.74321
[56] Symons, D. D.; Fleck, N. A., The imperfection sensitivity of isotropic two-dimensional elastic lattices, J. Appl. Mech., 75, 5, 051011 (2008)
[57] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 1529-1563 (1996)
[58] Tancogne-Dejean, T.; Spierings, A. B.; Mohr, D., Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater., 116, 14-28 (2016)
[59] Tankasala, H.; Deshpande, V.; Fleck, N., Tensile response of elastoplastic lattices at finite strain, J. Mech. Phys. Solids, 109, 307-330 (2017)
[60] Tankasala, H. C.; Deshpande, V. S.; Fleck, N. A., 2013 Koiter medal paper: crack-Tip fields and toughness of two-dimensional elastoplastic lattices, J. Appl. Mech., 82, 9, 091004 (2015)
[61] Tembhekar, I.; Amelang, J. S.; Munk, L.; Kochmann, D. M., Automatic adaptivity in the fully nonlocal quasicontinuum method for coarse-grained atomistic simulations, Int. J. Numer. Methods Eng., 110, 9, 878-900 (2017) · Zbl 07866637
[62] Thiyagasundaram, P.; Wang, J.; Sankar, B. V.; Arakere, N. K., Fracture toughness of foams with tetrakaidecahedral unit cells using finite element based micromechanics, Eng. Fract. Mech., 78, 6, 1277-1288 (2011)
[63] Triantafyllidis, N.; Bardenhagen, S., On higher order gradient continuum theories in 1-d nonlinear elasticity. derivation from and comparison to the corresponding discrete models, J. Elast., 33, 3, 259-293 (1993) · Zbl 0819.73008
[64] Vigliotti, A.; Deshpande, V. S.; Pasini, D., Non linear constitutive models for lattice materials, J. Mech. Phys. Solids, 64, 44-60 (2014)
[65] Vigliotti, A.; Pasini, D., Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials, Mech. Mater., 46, 57-68 (2012)
[66] Vigliotti, A.; Pasini, D., Stiffness and strength of tridimensional periodic lattices, Comput. Methods Appl. Mech. Eng., 229-232, 27-43 (2012)
[67] Wang, Y.; Cuitiño, A., Three-dimensional nonlinear open-cell foams with large deformations, J. Mech. Phys. Solids, 48, 5, 961-988 (2000) · Zbl 0990.74020
[68] Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A.; Kucheyev, S. O.; Fang, N. X.; Spadaccini, C. M., Ultralight, ultrastiff mechanical metamaterials, Science, 344, 6190, 1373-1377 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.