×

Fractional Black-Scholes model with regularized Prabhakar derivative. (English) Zbl 1474.62361

Summary: We introduce a fractional type Black-Scholes model in European options including the regularized Prabhakar derivative. We apply the reconstruction of variational iteration method to get the approximate analytical solutions for some models of generalized fractional Black-Scholes equations in terms of the generalized Mittag-Leffler functions.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] M. H. Akrami, G. H. Erjaee,Examples of analytical solutions by means of Mittag-Leffler function of fractional Black-Scholes option pricing equation, Fract. Calc. Appl. Anal.,18(1) (2015), 38-47. · Zbl 1308.91182
[2] P. Amster, C. G. Averbuj, M. C. Mariani,Solutions to a stationary nonlinear Black-Scholes type equation, J. Math. Anal. Appl.,276(2002), 231-238. · Zbl 1027.60077
[3] J. Ankudinova, M. Ehrhardt,On the numerical solution of nonlinear Black-Scholes Equations, Comput. Math. Appl.,56(2008), 799-812. · Zbl 1155.65367
[4] H. Askari, A. Ansari,Fractional calculus of variations with a generalized fractional derivative, Fract. Diff. Calc.,6(1) (2016), 57-72. · Zbl 1438.49035
[5] Yu. I. Babenko,Heat and Mass Transfer, Chemia, Leningrad, 1986.
[6] R. L. Bagley,On the fractional order initial value problem and its engineering applications, in: K. Nishimoto (ed.),Fractional Calculus and Its Applications, Tokyo, College of Engineering, Nihon University, 1990, 12-20. · Zbl 0751.73023
[7] H. Beyer, S. Kempfle,Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech.75(8) (1995), 623-635. · Zbl 0865.70014
[8] M. Bohner, Y. Zheng,On analytical solution of the Black-Scholes equation, Appl. Math. Lett. 22(2009), 309-313. · Zbl 1159.91014
[9] Z. Cen, A. Le,A robust and accurate finite difference method for a generalized Black-Scholes equation, J. Comput. Appl. Math.235(2011), 3728-3733. · Zbl 1214.91130
[10] R. Company, E. Navarro, J. R. Pintos, E. Ponsoda,Numerical solution of linear and nonlinear Black-Scholes option pricing equations, Comput. Math. Appl.56(2008), 813-821. · Zbl 1155.65370
[11] L. Debnath,Fractional integral and fractional differential equations in fluid mechanics, Fract. Calc. Appl. Anal.,6(2) (2003), 119-155. · Zbl 1076.35095
[12] M. D’Ovidio, F. Polito,Fractional diffusion-telegraph equations and their associated stochastic solutions, arXiv:1307.1696v3 [math.PR], (2013), 22 pages.
[13] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi,Higher Transcendental Functions, McGraw-Hill, New York-Toronto-London, 1953. · Zbl 0051.30303
[14] S. Eshaghi, A. Ansari,Autoconvolution equations and generalized Mittag-Leffler functions, Int. J. Ind. Math.7(4) (2015), 335-341.
[15] F. Fabiao, M. R. Grossinho, O. A. Simoes,Positive solutions of a Dirichlet problem for a stationary nonlinear Black-Scholes equation, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods71(10) (2009), 4624-4631. · Zbl 1175.35050
[16] R. Garra, R. Gorenflo, F. Polito, Z. Tomovski,Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput.242(2014), 576-589. · Zbl 1334.26008
[17] R. Gorenflo, F. Mainardi,Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (eds.),Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures378, Springer-Verlag, Wien, 1997, 223-276. · Zbl 1438.26010
[18] R. Gorenflo, A. A. Kilbas, S. V. Rogosin,On the generalized Mittag-Leffler type function, Integral Transforms Spec. Funct.7(1998), 215-224. · Zbl 0935.33012
[19] R. Gorenflo, R. Rutman,On ultraslow and intermediate processes, in: P. Rusev, I. Dimovski, V. Kiryakova (eds.),Transform Methods and Special Functions, Science Culture Technology Publishing (SCTP), Singapore, 1995, 61-81. · Zbl 0923.34005
[20] V. Gulkac,The homotopy perturbation method for the Black-Scholes equation, J. Stat. Comput. Simulation80(2010), 1349-1354. · Zbl 1233.91274
[21] E. Hesameddini, H. Latifizadeh,Reconstruction of variational iteration algorithms using the Laplace transform, Int. J. Nonlinear Sci. Numer. Simul.10(2009), 1377-1382. · Zbl 1191.65165
[22] R. Hilfer, H. Seybold,Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transforms Spec. Funct.17(2006), 637-652. · Zbl 1096.65024
[23] A. A. Kilbas, M. Saigo,On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transforms Spec. Funct.4(1996), 355-370. · Zbl 0876.26007
[24] A. A. Kilbas, M. Saigo, R. K. Saxena,Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct.15(2004), 31-49. · Zbl 1047.33011
[25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo,Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies204, Elsevier Science, Amsterdam, 2006. · Zbl 1092.45003
[26] S. Kumar, D. Kumar, J. Singh,Numerical computation of fractional Blacke-Scholes equation arising in financial market, EJBAS1(2014), 177-183.
[27] S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand, L. Wei,Analytical solution of fractional Black-Scholes European option pricing equation by using Laplace transform, Fract. Calc. Appl. Anal.2(8) (2012), 1-9. · Zbl 1488.91167
[28] F. Mainardi,Fractional relaxation and fractional diffusion equations, mathematical aspects, in: W. F. Ames (ed.),Proceedings of the 12th IMACS World Congress, Georgia Tech Atlanta, 1(1994), 329-332.
[29] R. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher,Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys.103(16) (1995), 7180-7186.
[30] G. M. Mittag-Leffler,Sur la nouvelle fonction𝐸𝛼(𝑥), C. R. Acad. Sci., Paris,137(1904), 554-558. · JFM 34.0435.01
[31] F. Polito, Z. Tomovski,Some properties of Prabhakar-type fractional calculus operators, Fractional Differ. Calc.6(1) (2016), 73-94. · Zbl 1424.26017
[32] T. R. Prabhakar,A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama J. Math.19(1971), 7-15. · Zbl 0221.45003
[33] K. Sayevand,A study on existence and global asymptotical Mittag-Leffler stability of fractional Black-Scholes European option pricing equation, J. Hyperstruct.3(2) (2014), 126-138. · Zbl 1410.91464
[34] H. J. Seybold, R. Hilfer,Numerical results for the generalized Mittag-Leffler function, Fract. Calc. Appl. Anal.8(2005), 127-139. · Zbl 1123.33018
[35] L. Song, W. Wang,Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal.2013(2013), Article ID 194286, 10 pages. · Zbl 1291.91235
[36] H. M. Srivastava, Z. Tomovski,Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput.211(2009), 198-210. · Zbl 1432.30022
[37] Z. Tomovski, R. Hilfer, H. M. Srivastava,Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Fract. Calc. Appl. Anal.21 (2010), 797-814. · Zbl 1213.26011
[38] W. Wyss,The fracyional Black-Scholes equation, Fract. Calc. Appl. Anal.3(1) (2000), 51-61 · Zbl 1058.91045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.