×

Unbounded order convergence and the Gordon theorem. (English) Zbl 1474.46006

Summary: The celebrated Gordon’s theorem [E. I. Gordon, Sov. Math., Dokl. 18, 1481–1484 (1977; Zbl 0406.03064); translation from Dokl. Akad. Nauk SSSR 237, 773–775 (1977)] is a natural tool for dealing with universal completions of Archimedean vector lattices. Gordon’s theorem allows us to clarify some recent results on unbounded order convergence. Applying the Gordon theorem, we demonstrate several facts on order convergence of sequences in Archimedean vector lattices. We present an elementary Boolean-valued proof of the Gao-Grobler-Troitsky-Xanthos theorem [N. Gao et al., Isr. J. Math. 220, No. 2, 649–689 (2017; Zbl 1395.46017)] saying that a sequence \(x_n\) in an Archimedean vector lattice \(X\) is \(uo\)-null \((uo\)-Cauchy) in \(X\) if and only if \(x_n\) is \(o\)-null \((o\)-convergent) in \(X^u\). We also give elementary proof of the theorem, which is a result of contributions of several authors, saying that an Archimedean vector lattice is sequentially \(uo\)-complete if and only if it is \(\sigma \)-universally complete. Furthermore, we provide a comprehensive solution to Azouzi’s problem [Y. Azouzi, J. Math. Anal. Appl. 472, No. 1, 216–230 (2019; Zbl 1421.46002)] on characterization of an Archimedean vector lattice in which every \(uo\)-Cauchy net is \(o\)-convergent in its universal completion.

MSC:

46A40 Ordered topological linear spaces, vector lattices
46S20 Nonstandard functional analysis
03H05 Nonstandard models in mathematics
03C90 Nonclassical models (Boolean-valued, sheaf, etc.)

References:

[1] Aliprantis C. D., Burkinshaw O., #Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, #105, 2nd ed., Amer. Math. Soc., Providence, RI, 2003 · Zbl 1043.46003 · doi:10.1090/surv/105
[2] Kusraev A. G., #Dominated Operators, Kluwer, Dordrecht, 2000 · Zbl 0983.47025
[3] Gao N., Troitsky V. G., Xanthos F., “Uo-Convergence and its Applications to Cesáro Means in Banach Lattices”, #Israel Journal of Mathematics, #220:2 (2017), 649-689 · Zbl 1395.46017 · doi:10.1007/s11856-017-1530-y
[4] Kaplan S., “On Unbounded Order Convergence”, #Real Anal. Exchange, #23:1 (1997/98), 175-184 · Zbl 0945.46002 · doi:10.2307/44152839
[5] Kusraev A. G., Kutateladze S. S., #Boolean-valued Analysis, Kluwer Academic, Dordrecht, 1999 · Zbl 0935.03058
[6] Abramovich Y. A., Sirotkin G. G., “On Order Convergence of Nets”, #Positivity, #9:3 (2005), 287-292 · Zbl 1110.46002 · doi:10.1007/s11117-004-7543-x
[7] Dabboorasad Y. A., Emelyanov E. Y., Marabeh M. A. A., “Order Convergence in Infinite-dimensional Vector Lattices is not Topological”, #Uzbek Math. J., #3 (2019), 4-10
[8] Gorokhova S. G., “Intrinsic Characterization of the Space \(c_0(A)\) in the Class of Banach Lattices”, #Math. Notes, #60:3 (1996), 330-333 · Zbl 0908.46013 · doi:10.1007/bf02320373
[9] Nakano H., “Ergodic Theorems in Semi-ordered Linear Spaces”, #Ann. Math., #49:2 (1948), 538-556 · Zbl 0032.35901 · doi:10.2307/1969044
[10] Wickstead A. W., “Weak and Unbounded Order Convergence in Banach Lattices”, #J. Austral. Math. Soc. Ser. A, #24:3 (1977), 312-319 · Zbl 0374.46007 · doi:10.1017/s1446788700020346
[11] Deng Y., O’Brien M., Troitsky V. G., “Unbounded Norm Convergence in Banach Lattices”, #Positivity, #21:3 (2017), 963-974 · Zbl 1407.46016 · doi:10.1007/s11117-016-0446-9
[12] Emelyanov E. Y., Marabeh M. A. A., “Two Measure-free Versions of the Brezis-Lieb Lemma”, #Vladikavkaz Math. J., #18:1 (2016), 21-25 · Zbl 1474.46061 · doi:10.23671/VNC.2016.1.5930
[13] Li H., Chen Z., “Some Loose Ends on Unbounded Order Convergence”, #Positivity, #22:1 (2018), 83-90 · Zbl 1397.46002 · doi:10.1007/s11117-017-0501-1
[14] Emelyanov E. Y., Erkurşun-Özcan N., Gorokhova S. G., “Komlós Properties in Banach Lattices”, #Acta Math. Hungarica, #155:2 (2018), 324-331 · Zbl 1413.46024 · doi:10.1007/s10474-018-0852-5
[15] Azouzi Y., “Completeness for Vector Lattices”, #J. Math. Anal. Appl., #472:1 (2019), 216-230 · Zbl 1421.46002 · doi:10.1016/j.jmaa.2018.11.019
[16] Taylor M. A., “Completeness of Unbounded Convergences”, #Proc. Amer. Math. Soc., #146:8 (2018), 3413-3423 · Zbl 1409.46005 · doi:10.1090/proc/14007
[17] Ayd{\i}n A., Emelyanov E. Y., Erkurşun-Özcan N., Marabeh M. A. A., “Unbounded \(p\)-Convergence in Lattice-normed Vector Lattices”, #Siberian Adv. Math., #29:3 (2019), 164-182 · Zbl 1444.46004 · doi:10.3103/s1055134419030027
[18] Taylor M. A., Master Thesis, University of Alberta, Edmonton, 2019
[19] Gordon E. I., “Real Numbers in Boolean-Valued Models of Set Theory and \(K\)-Spaces”, #Dokl. Akad. Nauk SSSR, #237:4 (1977), 773-775 · Zbl 0406.03064
[20] Kantorovich L. V., “On Semi-Ordered Linear Spaces and their Applications to the Theory of Linear Operations”, #Dokl. Akad. Nauk SSSR, #4:1-2 (1935), 11-14
[21] Gordon E. I., “\(K\)-spaces in Boolean-valued Models of Set Theory”, #Dokl. Akad. Nauk SSSR, #258:4 (1981), 777-780 · Zbl 0514.03032
[22] Gordon E. I., “Theorems on Preservation of Relations in \(K\)-spaces”, #Sib. Math. J., #23:3 (1982), 336-344 · Zbl 0523.03026 · doi:10.1007/bf00973490
[23] Dales H. G., Woodin W. H., #An Introduction to Independence for Analysts, Cambridge University Press, Cambridge, 1987, 241 pp. · Zbl 0629.03030
[24] Gordon E. I., Kusraev A. G., Kutateladze S. S., #Infinitesimal Analysis, Kluwer Academic Publishers, Dordrecht, 2002 · Zbl 1037.46065
[25] Gutman A. E., Kusraev A. G., Kutateladze S. S., “The Wickstead Problem”, #Sib. Elektron. Mat. Izv., #5 (2008), 293-333 · Zbl 1299.46004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.