×

Taylor-Hood discretization of the Reissner-Mindlin plate. (English) Zbl 1473.65299

Summary: A shear-locking free finite element discretization of the Reissner-Mindlin plate model is introduced. The rotation is discretized with piecewise polynomials of degree \(k+2\) while the degree \(k\geq 0\) is used for the displacement gradient. The method is closely related to the (generalized) Taylor-Hood pairing. In this case the general theory of saddle-point problems with penalty cannot exclude that the convergence speed for the rotation is limited by the lower rate expected for the displacement. However, in this paper, it is shown that the rotations are approximated at optimal order of accuracy. This superconvergence phenomenon is proved by means of the approximation properties of the Fortin operator for the Taylor-Hood element and the Galerkin projection.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
74K20 Plates
Full Text: DOI

References:

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, D.C., 1964. · Zbl 0171.38503
[2] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19 (1985), pp. 7-32. · Zbl 0567.65078
[3] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo, 21 (1984), pp. 337-344 (1985). · Zbl 0593.76039
[4] D. N. Arnold and R. S. Falk, Edge Effects in the Reissner-Mindlin Plate Theory, in Analytic and Computational Models of Shells, A. K. Noor, T. Belytschhko, and J. Simo, eds., A.S.M.E., New York, 1989, pp. 71-90.
[5] D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), pp. 1276-1290. · Zbl 0696.73040
[6] D. N. Arnold and R. S. Falk, The boundary layer for the Reissner-Mindlin plate model, SIAM J. Math. Anal., 21 (1990), pp. 281-312. · Zbl 0698.73042
[7] D. Boffi, Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations, Math. Models Methods Appl. Sci., 4 (1994), pp. 223-235. · Zbl 0804.76051
[8] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics 44, Springer, Heidelberg, 2013. · Zbl 1277.65092
[9] D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd ed., Cambridge University Press, Cambridge, UK, 2007. · Zbl 1180.65146
[10] F. Brezzi and M. Fortin, Numerical approximation of Mindlin-Reissner plates, Math. Comp., 47 (1986), pp. 151-158. · Zbl 0596.73058
[11] F. Brezzi, M. Fortin, and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates, Math. Models Methods Appl. Sci., 1 (1991), pp. 125-151. · Zbl 0751.73053
[12] C. Carstensen, Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element, SIAM J. Numer. Anal., 39 (2002), pp. 2034-2044. · Zbl 1042.74049
[13] C. Carstensen, D. Gallistl, and M. Schedensack, Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems, Math. Comp., 84 (2015), pp. 1061-1087. · Zbl 1311.65136
[14] C. Carstensen, D. Peterseim, and M. Schedensack, Comparison results of finite element methods for the Poisson model problem, SIAM J. Numer. Anal., 50 (2012), pp. 2803-2823. · Zbl 1261.65115
[15] C. Chinosi and C. Lovadina, Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates, Comput. Mech., 16 (1995), pp. 36-44. · Zbl 0824.73066
[16] M. Crouzeix and R. S. Falk, Nonconforming finite elements for the Stokes problem, Math. Comp., 52 (1989), pp. 437-456. · Zbl 0685.76018
[17] E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér., 30 (1996), pp. 385-400. · Zbl 0853.65110
[18] R. Durán and E. Liberman, On mixed finite element methods for the Reissner-Mindlin plate model, Math. Comp., 58 (1992), pp. 561-573. · Zbl 0763.73054
[19] R. S. Falk, A Fortin operator for two-dimensional Taylor-Hood elements, ESAIM, Math. Model. Numer. Anal., 42 (2008), pp. 411-424. · Zbl 1143.65085
[20] M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg., 19 (1983), pp. 505-520. · Zbl 0514.73068
[21] D. Gallistl and M. Schedensack, A robust discretization of the Reissner-Mindlin plate with arbitrary polynomial degree, J. Comput. Math., 38 (2020), pp. 1-13. · Zbl 1463.65367
[22] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées 22, Masson, Paris, 1992. · Zbl 0766.35001
[23] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79 (2010), pp. 2169-2189. · Zbl 1201.65198
[24] M. Schedensack, A new generalization of the \(P_1\) non-conforming FEM to higher polynomial degrees, Comput. Methods Appl. Math., 17 (2017), pp. 161-185. · Zbl 1443.65368
[25] A. Veeser and P. Zanotti, Quasi-optimal nonconforming methods for symmetric elliptic problems. II-Overconsistency and classical nonconforming elements, SIAM J. Numer. Anal., 57 (2019), pp. 266-292. · Zbl 1414.65037
[26] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. · Zbl 1279.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.