×

Simple models for multivariate regular variation and the Hüsler-Reiß Pareto distribution. (English) Zbl 1473.62170

Summary: We revisit multivariate extreme-value theory modeling by emphasizing multivariate regular variation and a multivariate version of Breiman’s Lemma. This allows us to recover in a simple framework the most popular multivariate extreme-value distributions, such as the logistic, negative logistic, Dirichlet, extremal-\(t\) and Hüsler-Reiß models. We then focus on the Hüsler-Reiß Pareto model and its surprising exponential family property. After a thorough study of this exponential family structure, we focus on maximum likelihood estimation: we prove the existence of asymptotically normal maximum likelihood estimators and provide simulation experiments assessing their finite-sample properties. We also consider the generalized Hüsler-Reiß Pareto model with different tail indices and a likelihood ratio test for discriminating constant tail index versus varying tail indices.

MSC:

62H10 Multivariate distribution of statistics
62G32 Statistics of extreme values; tail inference
62E15 Exact distribution theory in statistics

Software:

ismev

References:

[1] Balkema, A. A.; de Haan, L., Residual life time at great age, Ann. Probab., 2, 792-804 (1974) · Zbl 0295.60014
[2] Barndorff-Nielsen, O., Information and Exponential Families in Statistical Theory (2014), Wiley: Wiley Chichester · Zbl 1288.62007
[3] Belzile, L. R.; Nešlehová, J. G., Extremal attractors of Liouville copulas, J. Multivariate Anal., 160, 68-92 (2017) · Zbl 1372.60071
[4] Breiman, L., On some limit theorems similar to the arc-sin law, Theory Probab. Appl., 10, 323-331 (1965) · Zbl 0147.37004
[5] Coles, S. G., An Introduction To Statistical Modeling of Extreme Values (2001), Springer: Springer London · Zbl 0980.62043
[6] Coles, S. G.; Tawn, J. A., Modelling extreme multivariate events, J. R. Stat. Soc. Ser. B, 53, 377-392 (1991) · Zbl 0800.60020
[7] Davis, R. A.; Mikosch, T., Extreme value theory for space – time processes with heavy-tailed distributions, Stoch. Process. Appl., 118, 560-584 (2008) · Zbl 1142.60040
[8] Deheuvels, P., Caractérisation complète des lois extrêmes multivariées et de la convergence aux types extrêmes, Publ. Inst. Statist. Univ. Paris, 23, 1-36 (1978) · Zbl 0414.60043
[9] Genest, C.; Nešlehová, J., Copula modeling for extremes, (A. H. El-Shaarawi, W. W. Piegorsch, Encyclopedia of Environmetrics, Vol. 2 (2012), Wiley: Wiley Chichester), 530-541
[10] Gnedenko, B., Sur la distribution limite du terme maximum d’une série aléatoire, Ann. of Math., 44, 423-453 (1943) · Zbl 0063.01643
[11] Gudendorf, G.; Segers, J., Extreme-value copulas, (Jaworski, P.; Durante, F.; Härdle, W. K.; Rychlik, T., Copula Theory and Its Applications, Proceedings of the Workshop Held in Warsaw, 25-26 2009 (2009), Springer: Springer Heidelberg), 127-145
[12] de Haan, L.; Resnick, S. I., Limit theory for multivariate sample extremes, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 40, 317-337 (1977) · Zbl 0375.60031
[13] Hult, H.; Lindskog, F., Regular variation for measures on metric spaces, Publ. Inst. Math. (Beograd) (N.S.), 80, 121-140 (2006) · Zbl 1164.28005
[14] Huser, R.; Davison, A. C., Composite likelihood estimation for the brown – resnick process, Biometrika, 100, 511-518 (2013) · Zbl 1452.62702
[15] Hüsler, J.; Reiß, R.-D., Maxima of normal random vectors: Between independence and complete dependence, Statist. Probab. Lett., 7, 283-286 (1989) · Zbl 0679.62038
[16] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & Hall: Chapman & Hall London · Zbl 0990.62517
[17] Joe, H., Dependence Modeling with Copulas (2015), CRC Press: CRC Press Boca Raton, FL
[18] Kiriliouk, A.; Rootzén, H.; Segers, J.; Wadsworth, J. L., Peaks over thresholds modeling with multivariate generalized pareto distributions, Technometrics, 61, 123-135 (2019)
[19] Krupskii, P.; Joe, H.; Lee, D.; Genton, M. G., Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the Hüsler-Reiß distribution, J. Multivariate Anal., 163, 80-95 (2018) · Zbl 1499.62164
[20] Lehmann, E. L., Elements of Large-Sample Theory (1999), Springer: Springer New York · Zbl 0914.62001
[21] Nikoloulopoulos, A. K.; Joe, H.; Li, H., Extreme value properties of multivariate \(t\) copulas, Extremes, 12, 129-148 (2009) · Zbl 1223.62081
[22] Tiago de Oliveira, J., Extremal distributions, Rev. Fac. Sci. Lisboa, Ser. A, 7, 215-227 (1958)
[23] Resnick, S. I., Extreme Values, Regular Variation, and Point Processes (1987), Springer: Springer New York · Zbl 0633.60001
[24] Resnick, S. I., Heavy-Tail Phenomena (2007), Springer: Springer New York · Zbl 1152.62029
[25] Rootzén, H.; Segers, J.; Wadsworth, J. L., Multivariate peaks over thresholds models, Extremes, 21, 115-145 (2018) · Zbl 1390.62083
[26] Rootzén, H.; Tajvidi, N., Multivariate generalized Pareto distributions, Bernoulli, 12, 917-930 (2006) · Zbl 1134.62028
[27] Sibuya, M., Bivariate extreme statistics: I, Ann. Inst. Statist. Math. Tokyo, 11, 195-210 (1960) · Zbl 0095.33703
[28] van der Vaart, A. W., Asymptotic Statistics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0910.62001
[29] Wadsworth, J. L.; Tawn, J. A., Efficient inference for spatial extreme value processes associated to log-Gaussian random functions, Biometrika, 101, 1-15 (2014) · Zbl 1400.62104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.