×

A compendium of copulas. (English) Zbl 1473.62164

Summary: Copulas are used to specify dependence between two or more random variables. The last few years have seen a surge of developments of parametric models for copulas. Here, we provide an up-to-date and a comprehensive review of known parametric copulas as well as applications and open problems. This review is believed to be the first of its kind.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
Full Text: DOI

References:

[1] N. H. ABEL (1826). Untersuchung der functionen zweier unabhängig veränderli chen grössen x und y wie f (x, y), welche die eigenschaft haben, dass f (z, f (x, y)) eine symmetrische function von x, y und z ist. Journal für die Reine und Angewandte Mathematik, 1, pp. 11-15. · ERAM 001.0003cj
[2] E. K. AL-HUSSAINI, S. F. ATEYA (2006). A class of multivariate distributions and new copulas. Journal of the Egyptian Mathematical Society, 14, pp. 45-54. · Zbl 1127.62049
[3] M. M. ALI, N. N.MIKHAIL, M. S. HAQ (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, pp. 405-412. · Zbl 0387.62019
[4] C. ALSINA, M. J. FRANK, B. SCHWEIZER (2006). Associative Functions. Triangular Norms and Copulas. World Scientific, Singapore. · Zbl 1100.39023
[5] E. W. ANDERSEN (2005). Two-stage estimation in copula models used in family studies. Lifetime Data Analysis, 11, pp. 333-350. · Zbl 1101.62088
[6] A. ANDRONOV (2010). On a copula for failure times of system elements. In Mathematical and Statistical Models and Methods in Reliability. Springer Verlag, New York, pp. 39-50. · Zbl 1407.62357
[7] T. BACIGAL, V. JAGR, R.MESIAR (2011). Non-exchangeable random variables, Archimax copulas and their fitting to real data. Kybernetika, 47, pp. 519-531. · Zbl 1227.93120
[8] N. BALAKRISHNAN, C. D. LAI (2009). Continuous Bivariate Distributions. Springer Verlag, Dordrecht. · Zbl 1267.62028
[9] V. BARNETT (1980). Some bivariate uniform distributions. Communications in Statistics - Theory and Methods, 9, pp. 453-461. · Zbl 0449.62011
[10] H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2012). The new generalization of Farlie-Gumbel-Morgenstern copulas. Applied Mathematical Sciences, 6, pp. 3527-3533. · Zbl 1264.62054
[11] H. BEKRIZADEH, G. A. PARHAM, M. R. ZADKARMI (2013). Weighted Clayton copulas and their characterizations: Application to probable modeling of the hydrology data. Journal of Data Science, 11, pp. 293-303.
[12] V. BENEŠ, J. STĚPÁN (1997). Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht. · Zbl 0885.00054
[13] G. BERNHART, M. E. ANEL, J. F. MAI, M. SCHERER (2013). Default models based on scale mixtures of Marshall-Olkin copulas: Properties and applications. Metrika, 76, pp. 179-203. · Zbl 1430.91121
[14] O. BOZKURT (2013). Mixtures of Farlie-Gumbel-Morgenstern copulas. Communications in Statistics - Simulation and Computation, 42, pp. 171-182. · Zbl 1327.62364
[15] I. BURR (1942). Cumulative frequency functions. Annals of Mathematical Statistics, 13, pp. 215-232. · Zbl 0060.29602
[16] S. CAMBANIS, S. HUANG, G. SIMONS (1981). On the theory of elliptically contoured distributions. Journal of Multivariate Analysis, 11, pp. 368-385. · Zbl 0469.60019
[17] P. CAPÉRAÀ, A. L. FOUGÈRES, C. GENEST (2000). Bivariate distributions with given extreme value attractor. Journal of Multivariate Analysis, 72, pp. 30-49. · Zbl 0978.62043
[18] H. CARLEY, M. D. TAYLOR (2002). A new proof of Sklar’s theorem. In Distributions with Given Marginals and Statistical Modelling. pp. 29-34. · Zbl 1137.62336
[19] J. A. CARNICERO, M. C. AUSIN, M. P. WIPER (2013). Non-parametric copulas for circular-linear and circular-circular data: An application to wind directions. Stochastic Environmental Research and Risk Assessment, 27, pp. 1991-2002.
[20] J. C. C. CHAN, D. P. KROESE (2010). Efficient estimation of large portfolio loss probabilities in t -copula models. European Journal of Operational Research, 205, pp. 361-367. · Zbl 1188.91231
[21] A. CHARPENTIER, A. L. FOUGÈRES, C.GENEST, J.NEŠLEHOVÁ (2014). Multivariate Archimax copulas. Journal of Multivariate Analysis, 126, pp. 118-136. · Zbl 1349.62173
[22] U. CHERUBINI, F. DURANTE, S. MULINACCI (2015). Marshall-Olkin Distributions - Advances in Theory and Applications. Springer Verlag, Heidelberg. · Zbl 1322.60002
[23] U. CHERUBINI, E. LUCIANO, W. VECCHIATO (2004). Copula Methods in Finance. JohnWiley and Sons, Chichester. · Zbl 1163.62081
[24] U. CHERUBINI, S. ROMAGNOLI (2009). The dependence structure of running maxima and minima: Results and option pricing applications. Mathematical Finance, 20, pp. 35-58. · Zbl 1182.91168
[25] D. G. CLAYTON (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, pp. 141-151. · Zbl 0394.92021
[26] S. G. COLES, J. A. TAWN (1994). Statistical methods for multivariate extremes: An application to structural design (with discussion). Applied Statistics, 43, pp. 1-48. · Zbl 0825.62717
[27] R. D. COOK, M. E. JOHNSON (1981). A family of distributions for modeling nonelliptically symmetric multivariate data. Journal of the Royal Statistical Society: Series B, 43, pp. 210-218. · Zbl 0471.62046
[28] S. CORBELLA, D. D. STRETCH (2013). Simulating a multivariate sea storm using Archimedean copulas. Coastal Engineering, 76, pp. 68-78.
[29] R. CORLESS, G.GONNET, D.HARE, D. JEFFREY, D. KNUTH (1996). On the Lambert W function. Advances in Computational Mathematics, 5, pp. 329-359. · Zbl 0863.65008
[30] H. COSSETTE, E. MARCEAU, F. MARRI (2011). Constant dividend barrier in a risk model with a generalized Farlie-Gumbel-Morgenstern copula. Methodology and Computing in Applied Probability, 13, pp. 487-510. · Zbl 1232.91343
[31] C. M. CUADRAS (2009). Constructing copula functions with weighted geometric means. Journal of Statistical Planning and Inference, 139, pp. 3766-3772. · Zbl 1274.62396
[32] C. M. CUADRAS, J. AUGÉ (1981). A continuous general multivariate distribution and its properties. Communications in Statistics - Theory and Methods, 10, pp. 339-353. · Zbl 0456.62013
[33] C. M. CUADRAS, J. FORTIANA, J. A. RODRÍGUEZ-LALLENA (2002). Distributions with Given Marginals and Statistical Modelling. Kluwer, Dordrecht. · Zbl 1054.62002
[34] R. DAKOVIC, C. CZADO (2011). Comparing point and interval estimates in the bivariate t -copula model with application to financial data. Statistical Papers, 52, pp. 709-731. · Zbl 1230.62028
[35] G. DALL’AGLIO, S. KOTZ, G. SALINETTI (1991). Probability Distributions with Given Marginals. Kluwer, Dordrecht. · Zbl 0722.00031
[36] W. F.DARSOW, B. NGUYEN, E.T. OLSEN (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36, pp. 600-642. · Zbl 0770.60019
[37] M. DAVY, A. DOUCET (2003). Copulas: A new insight into positive time-frequency distributions. IEEE Signal Processing Letters, 10, pp. 215-218.
[38] C. DE MICHELE, G. SALVADORI (2003). A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research, 108. ID 4067.
[39] C. DE MICHELE, G. SALVADORI, M. CANOSSI, A. PETACCIA, R. ROSSO (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrological Engineering, 10, pp. 50-57.
[40] C. DE MICHELE, G. SALVADORI, R. VEZZOLI, S. PECORA (2013). Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resources Research, 49, pp. 6985-6994.
[41] D. J. DE WAAL, P. H. A. J. M. VAN GELDER (2005). Modelling of extreme wave heights and periods through copulas. Extremes, 8, pp. 345-356. · Zbl 1164.86300
[42] S. DEMARTA, A. J. MCNEIL (2005). The t copula and related copulas. International Statistical Review, 73, pp. 111-129. · Zbl 1104.62060
[43] D. DIERS, M. ELING, S. D. MAREK (2012). Dependence modeling in non-life insurance using the Bernstein copula. Insurance: Mathematics and Economics, 50, pp. 430-436. · Zbl 1237.91126
[44] A. DOBRA, A. LENKOSKI (2011). Copula Gaussian graphical models and their application to modeling functional disability data. Annals of Applied Statistics, 5, pp. 969-993. · Zbl 1232.62046
[45] D. DROUET-MARI, S. KOTZ (2001). Correlation and Dependence. Imperial College Press, London. · Zbl 0977.62004
[46] F. DURANTE, J. FERNÁNDEZ-SÁNCHEZ, C. SEMPI (2012). Sklar’s theorem obtained via regularization techniques. Nonlinear Analysis: Theory, Methods and Applications, 75, pp. 769-774. · Zbl 1229.62062
[47] F. DURANTE, J. FERNÁNDEZ-SÁNCHEZ, C. SEMPI (2013). Atopological proof of Sklar’s theorem. Applied Mathematics Letters, 26, pp. 945-948. · Zbl 1314.62127
[48] F. DURANTE, J. J. QUESADA-MOLINA, C. SEMPI (2007). A generalization of the Archimedean class of bivariate copulas. Annals of the Institute of Statistical Mathematics, 59, pp. 487-498. · Zbl 1332.62171
[49] F. DURANTE, G. SALVADORI (2010). On the construction of multivariate extreme value models via copulas. Environmetrics, 21, pp. 143-161.
[50] F. DURANTE, C. SEMPI (2015). Principles of Copula Theory. CRC Press, Florida. · Zbl 1380.62008
[51] V. DURRLEMAN, A. NIKEGHBALI, T. RONCALLI (2000). A note about the conjecture on Spearman’s rho and Kendall’s tau. Groupe de Recherche Opérationnelle, Crédit Lyonnais,Working Paper.
[52] P. EMBRECHTS, F. LINDSKOG, A. J.MCNEIL (2003). Modelling dependence with copulas and applications to risk management. In S. RACHEV (ed.), Handbook of Heavy Tailed Distributions in Finance. Elsevier, North-Holland, Amsterdam, pp. 329-384.
[53] S. ERYILMAZ (2011). Estimation in coherent reliability systems through copulas. Reliability Engineering and System Safety, 96, pp. 564-568.
[54] G. EVIN, A. C. FAVRE (2008). A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resources Research, 44. W03433.
[55] H. EYRAUD (1936). Les principes de la mesure des correlations. Ann. Univ. Lyon, III. Ser., Sect. A, 1, pp. 30-47. · Zbl 0015.16804
[56] H. B. FANG, K. T. FANG, S. KOTZ (2002). The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82, pp. 1-16. · Zbl 1002.62016
[57] K. T. FANG, S. KOTZ, K. W. NG (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall, London. · Zbl 0699.62048
[58] D. J. G. FARLIE (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, pp. 307-323. · Zbl 0102.14903
[59] O. P. FAUGERAS (2013). Sklar’s theorem derived using probabilistic continuation and two consistency results. Journal of Multivariate Analysis, 122, pp. 271-277. · Zbl 1349.60012
[60] M. FISCHER, G. HINZMANN (2006). A new class of copulas with tail dependence and a generalized tail dependence estimator. Department of Statistics and Econometrics, University of Erlangen-Näurnberg, Germany,Working Paper. · Zbl 1397.62207
[61] M. FISCHER, C. KÖCK (2012). Constructing and generalizing given multivariate copulas: A unifying approach. Statistics, 46, pp. 1-12. · Zbl 1314.62124
[62] J. P. FOUQUE, X. ZHOU (2008). Perturbed Gaussian copula. In J. P. FOUQUE, T. B. FOMBY, K. SOLNA (eds.), Econometrics and Risk Management. Emerald/JAI, Bingley, pp. 103-121. · Zbl 1189.91224
[63] G. FRAHM, M. JUNKER, A. SZIMAYER (2003). Elliptical copulas: Applicability and limitations. Statistics and Probability Letters, 63, pp. 275-286. · Zbl 1116.62352
[64] M. J. FRANK (1979). On the simultaneous associativity of f (x, y) and x + y - f (x, y). Aequationes Mathematicae, 21, pp. 194-226. · Zbl 0444.39003
[65] M. FRÉCHET (1958). Remarques au sujet de la note précédente. Comptes Rendus de l’Académie des Sciences Paris, 246, pp. 2719-2720. · Zbl 0084.35804
[66] E. W. FREES, E. VALDEZ (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, pp. 1-26. · Zbl 1081.62564
[67] J. GALAMBOS (1975). Order statistics of samples from multivariate distributions. Journal of the American Statistical Association, 70, pp. 674-680. · Zbl 0315.62022
[68] J. E. GARCÍA, V. A. GONZÁLEZ-LÓPEZA (2014). Modeling of acoustic signal energies with a generalized Frank copula. a linguistic conjecture is reviewed. Communications in Statistics - Theory and Methods, 43, pp. 2034-2044. · Zbl 1466.62452
[69] C. GENEST (2005a). Preface. Canadian Journal of Statistics, 33, pp. 313-316.
[70] C. GENEST (2005b). Preface. Insurance: Mathematics and Economics, 37, pp. 1-2.
[71] C. GENEST, A. C. FAVRE, J. BÉLIVEAU, C. JACQUES (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43, pp. 1-12.
[72] C. GENEST, R. J. MACKAY (1986). Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics, 14, pp. 145-159. · Zbl 0605.62049
[73] C. GENEST, J. G. NEŠLEHOVÁ (2014). On tests of radial symmetry for bivariate copulas. Statistical Papers, 55, pp. 1107-1119. · Zbl 1310.62069
[74] C.GENEST, S.NEŠLEHOVÁ (2007). A primer on copulas for count data. ASTIN Bulletin, 37, pp. 475-515. · Zbl 1274.62398
[75] C. GENEST, B. RÉMILLARD, D. BEAUDOIN (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44, pp. 199-213. · Zbl 1161.91416
[76] C. GENEST, L. P. RIVEST (1989). A characterization of Gumbel’s family of extreme value distributions. Statistics and Probability Letters, 8, pp. 207-211. · Zbl 0701.62060
[77] I. GIJBELS, M. OMELKA, D. SZNAJDER (2010). Positive quadrant dependence tests for copulas. Canadian Journal of Statistics, 38, pp. 555-581. · Zbl 1349.62152
[78] N. GÜLPINAR, K. KATATA (2014). Modelling oil and gas supply disruption risks using extreme-value theory and copula. Journal of Applied Statistics, 41, pp. 2-25. · Zbl 1514.62600
[79] E. J. GUMBEL (1958). Distributions à plusieurs variables dont les marges sont données. Comptes Rendus de l’Académie des Sciences Paris, 246, pp. 2717-2719. · Zbl 0084.35803
[80] E. J. GUMBEL (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, pp. 698-707. · Zbl 0099.14501
[81] J. HE, H. LI (2012). A Gaussian copula approach for the analysis of secondary phenotypes in case-control genetic association studies. Biostatistics, 13, pp. 497-508. · Zbl 1244.62156
[82] C. HERING, M. HOFERT, J. F. MAI, M. SCHERER (2010). Constructing hierarchical Archimedean copulas with Lévy subordinators. Journal of Multivariate Analysis, 101, pp. 1428-1433. · Zbl 1194.60017
[83] A. HERNÁNDEZ-BASTIDA, M. PILAR FERNÁNDEZ-SÁNCHEZ (2012). A Sarmanov family with beta and gamma marginal distributions: An application to the Bayes premium in a collective risk model. Statistical Methods and Applications, 21, pp. 391-409. · Zbl 1332.62042
[84] V.HERNÁNDEZ-MALDONADO, M.DIAZ-VIERA,A. ERDELY (2012). Ajoint stochastic simulation method using the Bernstein copula as a flexible tool for modeling nonlinear dependence structures between petrophysical properties. Journal of Petroleum Science and Engineering, 90-91, pp. 112-123.
[85] M. HOFERT (2008). Sampling Archimedean copulas. Computational Statistics and Data Analysis, 52, pp. 5163-5174. · Zbl 1452.62070
[86] M. HOFERT, M. SCHERER (2011). CDO pricing with nested Archimedean copulas. Quantitative Finance, 11, pp. 775-787. · Zbl 1213.91074
[87] J. HOLMAN, G. RITTER (2010). A new copula for modeling tail dependence. URL https://ssrn.com/abstract=1665977.
[88] P. HOUGAARD (1984). Life table methods for heterogeneous populations: Distributions describing for heterogeneity. Biometrika, 71, pp. 75-83. · Zbl 0553.92013
[89] C. P. HSU, C.W. HUANG,W. J. P. CHIOU (2012). Effectiveness of copula-extreme value theory in estimating value-at-risk: Empirical evidence from Asian emerging markets. Review of Quantitative Finance and Accounting, 39, pp. 447-468.
[90] J. S. HUANG, S. KOTZ (1999). Modifications of the Farlie-Gumbel-Morgenstern distribution: A tough hill to climb. Metrika, 49, pp. 135-145. · Zbl 1093.62514
[91] W. HÜRLIMANN (2004a). Fitting bivariate cumulative returns with copulas. Computational Statistics and Data Analysis, 45, pp. 355-372. · Zbl 1429.62471
[92] W. HÜRLIMANN (2004b). Multivariate Fréchet copulas and conditional value-at-risk. International Journal of Mathematics and Mathematical Sciences, pp. 345-364. · Zbl 1075.62043
[93] J.HÜSLER, R. D.REISS (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics and Probability Letters, 7, pp. 283-286. · Zbl 0679.62038
[94] R. IBRAGIMOV (2009). Copula-based characterizations for higher order Markov processes. Econometric Theory, 25, pp. 819-846. · Zbl 1277.60123
[95] A. A. JAVID (2009). Copulas with truncation-invariance property. Communications in Statistics - Theory and Methods, 38, pp. 3756-3771. · Zbl 1318.62164
[96] P. JAWORSKI, F. DURANTE, W. HÄRDLE, T. RYCHLIK (2010). Copula Theory and Its Applications: Proceedings of the Workshop held in Warsaw, 25-26 September, 2009, volume 198 of Lecture Notes in Statistics. Springer Verlag, Berlin/Heidelberg. · Zbl 1194.62077
[97] P. JAWORSKI, F. DURANTE, W. K. HARDLE (2013). Copulae in Mathematical and Quantitative Finance. Springer Verlag, New York. · Zbl 1268.91005
[98] H. JOE (1990). Families of min-stable multivariate exponential and multivariate extreme value distributions. Statistics and Probability Letters, 9, pp. 75-81. · Zbl 0686.62035
[99] H. JOE (1993). Parametric families of multivariate distributions with given marginals. Journal of Multivariate Analysis, 46, pp. 262-282. · Zbl 0778.62045
[100] H. JOE (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London. · Zbl 0990.62517
[101] H. JOE (2014). Dependence Modeling with Copulas. CRC Press, London. · Zbl 1346.62001
[102] H. JOE, T.HU (1996). Multivariate distributions from mixtures of max-infinitely divisible distributions. Journal of Multivariate Analysis, 57, pp. 240-265. · Zbl 0863.62047
[103] H. JOE, R. L. SMITH, I. WEISSMAN (1992). Bivariate threshold methods for extremes. Journal of the Royal Statistical Society: Series B, 54, pp. 171-183. · Zbl 0775.62083
[104] Y. S. JUNG, J. K. KIM, J. KIM (2008). New approach of directional dependence in exchange markets using generalized FGM copula function. Communications in Statistics - Simulation and Computation, 37, pp. 772-788. · Zbl 1291.62263
[105] Y. S. JUNG, J. M. KIM, E. A. SUNGUR (2007). Directional dependence of truncation invariant FGM copula functions: Application to foreign exchange currency data.
[106] S. C. KAO, R. S. GOVINDARAJU (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44.
[107] J. M. KIM, Y. S. JUNG, T. SODERBERG (2009). Directional dependence of genes using survival truncated FGM type modification copulas. Communications in Statistics - Simulation and Computation, 38, pp. 1470-1484. · Zbl 1167.62052
[108] J. M. KIM, E. A. SUNGUR (2004). New class of bivariate copulas. In Proceeding of the Spring Conference. Korean Statistical Society, Seoul.
[109] L. KNOCKAERT (2002). A class of positive isentropic time-frequency distributions. IEEE Signal Processing Letters, 9, pp. 22-25.
[110] K. J. KOEHLER, J. T. SYMANOWSKI (1995). Constructing multivariate distributions with specific marginal distributions. Journal of Multivariate Analysis, 55, pp. 261-282. · Zbl 0863.62048
[111] N. KOLEV, U. DOS ANJOS, B. V. M. MENDES (2006). Copulas: A review and recent developments. Stochastic Models, 22, pp. 617-660. · Zbl 1120.60006
[112] N. KOLEV, D. PAIVA (2009). Copula-based regression models: A survey. Journal of Statistical Planning and Inference, 139, pp. 3847-3856. · Zbl 1169.62328
[113] C. D. LAI, M. XIE (2000). A new family of positive quadrant dependence bivariate distributions. Statistics and Probability Letters, 46, pp. 359-364. · Zbl 0943.62043
[114] E. J. LEE, C. H. KIM, S. H. LEE (2011). Life expectancy estimate with bivariate Weibull distribution using Archimedean copula. International Journal of Biometrics and Bioinformatics, 5, pp. 149-161.
[115] D. LI (2000). On default correlation: A copula function approach. Journal of Fixed Income, 9, pp. 43-54.
[116] M. LI, M. BOEHNKE, G. R.ABECASIS, P. X. K. SONG (2006). Quantitative trait linkage analysis using Gaussian copulas. Genetics, 173, pp. 2317-2327.
[117] X. LI, P. MIKUSIŃSKI, H. SHERWOOD, M. D. TAYLOR (1997). On approximation of copulas. In V. BENEŠ, J. STĚPÁN (eds.), Distributions with Given Marginals and Moment Problems. Kluwer Academic Publishers, Dordrecht, pp. 107-116. · Zbl 0905.60015
[118] E. LIEBSCHER (2005). Semiparametric density estimators using copulas. Communications in Statistics - Theory and Methods, 34, pp. 59-71. · Zbl 1066.62046
[119] C. H. LING (1965). Representation of associative functions. Publicationes Mathematicae Debrecen, 12, pp. 189-212. · Zbl 0137.26401
[120] A. LOJOWSKA, D. KUROWICKA, G. PAPAEFTHYMIOU, L. VAN DER SLUIS (2012). Stochastic modeling of power demand due to EVs using copula. IEEE Transactions on Power Systems, 27, pp. 1960-1968.
[121] F. LOUZADA, A. K. SUZUKI, V. G. CANCHO, F. L. PRINCE, G. A. PEREIRA (2012). The long-term bivariate survival FGM copula model: An application to a Brazilian HIV data. Journal of Data Science, 10, pp. 511-535.
[122] J. L. LOWIN (2010). The fourier copula: Theory and applications. URL
[123] https://ssrn.com/abstract=1804664.
[124] J. LU, W. J. TIAN, P. ZHANG (2008). The extreme value copulas analysis of the risk dependence for the foreign exchange data. In Proceedings of the 4th International Conference on Wireless Communications, Networking and Mobile Computing. Dalian, China, pp. 1-6.
[125] X. LUO, P. V. SHEVCHENKO (2012). Bayesian model choice of grouped t -copula. Methodology and Computing in Applied Probability, 14, pp. 1097-1119. · Zbl 1293.90018
[126] J. F. MAI, S. SCHENK, M. SCHERER (2016). Exchangeable exogenous shock models. Bernoulli, 22, pp. 1278-1299. · Zbl 1388.62153
[127] J. F. MAI, M. SCHERER (2009). Lévy-frailty copulas. Journal of Multivariate Analysis, 100, pp. 1567-1585. · Zbl 1162.62048
[128] J. F. MAI, M. SCHERER (2011). Bivariate extreme-value copulas with discrete Pickands dependence measure. Extremes, 14, pp. 311-324. · Zbl 1329.62270
[129] J. F. MAI, M. SCHERER (2012). Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications. Imperial College Press, London. · Zbl 1301.65001
[130] J. F. MAI, M. SCHERER (2014). Financial Engineering with Copulas Explained. Palgrave Macmillan, London.
[131] Y.MALEVERGNE, D. SORNETTE (2006). Extreme Financial Risks: From Dependence to Risk Management. Springer Verlag, Berlin. · Zbl 1093.62098
[132] H. MANNER, O. REZNIKOVA (2012). A survey on time-varying copulas: Specification, simulations and application. Econometric Reviews, 31, pp. 654-687. · Zbl 1491.62038
[133] K. V.MARDIA (1970). Families of Bivariate Distributions. Hafner Publishing Company, Darien, Connecticut. · Zbl 0223.62062
[134] A. W. MARSHALL, I. OLKIN (1967). A generalized bivariate exponential distribution. Journal of Applied Probability, 4, pp. 291-302. · Zbl 0155.24001
[135] G. MASSONNET, P. JANSSEN, L. DUCHATEAU (2009). Modelling udder infection data using copula models for quadruples. Journal of Statistical Planning and Inference, 139, pp. 3865-3877. · Zbl 1169.62348
[136] G. MAYOR, J. SUNER, J. TORRENS (2007). Sklar’s theorem in finite settings. IEEE Transactions on Fuzzy Systems, 15, pp. 410-416.
[137] A. J.MCNEIL (2008). Sampling nested Archimedean copulas. Journal of Statistical Computation and Simulation, 78, pp. 567-581. · Zbl 1221.00061
[138] A. J. MCNEIL, R. FREY, P. EMBRECHTS (2005). Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton. · Zbl 1089.91037
[139] A. J. MCNEIL, J. NEŠLEHOVÁ (2009). Multivariate Archimedean copulas, d-monotone functions and l1-normsymmetric distributions. Annals of Statistics, 37, pp. 3059-3097. · Zbl 1173.62044
[140] A. MEEL, W. D. SEIDER (2006). Plant-specific dynamic failure assessment using Bayesian theory. Chemical Engineering Science, 61, pp. 7036-7056.
[141] C. MEYER (2013). The bivariate normal copula. Communications in Statistics - Theory and Methods, 42, pp. 2402-2422. · Zbl 1411.60035
[142] F. MICHIELS, A. DE SCHEPPER (2012). How to improve the fit of Archimedean copulas by means of transforms. Statistical Papers, 53, pp. 345-355. · Zbl 1440.62188
[143] R. MIRABBASI, A. FAKHERI-FARD, Y. DINPASHOH (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108, pp. 191- 206.
[144] I. MONTES, E. MIRANDA, R. PELESSONI, P. VICIG (2015). Sklar’s theorem in an imprecise setting. Fuzzy Sets and Systems, 278, pp. 48-66. · Zbl 1377.60033
[145] D. S. MOORE, M. C. SPRUILL (1975). Unified large-sample theory of general chi-squared statistics for tests of fit. Annals of Statistics, 3, pp. 599-616. · Zbl 0322.62047
[146] D. MORGENSTERN (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt für Mathematishe Statistik, 8, pp. 234-235. · Zbl 0070.36202
[147] R. B. NELSEN (1991). Copulas and association. In G. DALL’AGLIO, S. KOTZ, G. SALINETTI (eds.), Advances in Probability Distributions with Given Marginals. Beyond the Copulas. Dortrecht, Kluwer, pp. 51-74. · Zbl 0727.60002
[148] R. B. NELSEN (2002). Concordance and copulas: A survey. In C. M. CUADRAS, J. FORTIANA, J. A. RODRIGUEZ-LALLENA (eds.), Distributions with Given Marginals and Statistical Modelling. Kluwer, Dordrecht, pp. 169-177. · Zbl 1135.62337
[149] R. B. NELSEN (2006). An Introduction to Copulas. Springer Verlag, New York. · Zbl 1152.62030
[150] R. B. NELSEN, J. J. QUESADA-MOLINA, J. A. RODRÍGUEZ-LALLENA (1997). Bivariate copulas with cubic sections. Journal of Nonparametric Statistics, 7, pp. 205-220. · Zbl 0898.62074
[151] A. K. NIKOLOULOPOULOS, H. JOE, H. LI (2009). Extreme value properties of multivariate t copulas. Extremes, 12, pp. 129-148. · Zbl 1223.62081
[152] Y. NOH, K. K. CHOI, L. DU (2009). Reliability-based design optimization of problems with correlated input variables using a Gaussian copula. Structural and Multidisciplinary Optimization, 38, pp. 1-16.
[153] D. OAKES (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society: Series B, 44, pp. 414-422. · Zbl 0503.62035
[154] F. OERTEL (2015). An analysis of the Rüschendorf transform - with a view towards Sklar’s theorem. Dependence Modelling, 3, pp. 113-125. · Zbl 1406.60023
[155] A. ONKEN, K. OBERMAYER (2009). A Frank mixture copula family for modeling higherorder correlations of neural spike counts. Journal of Physics: Conference Series, 197. ID 012019.
[156] S. A. OSMETTI, R. CALABRESE (2013). Modelling cross-border bank contagion using Marshall-Olkin copula. In Proceedings of the Credit Scoring and Credit Control XIII Conference. Barcelona, Spain.
[157] A. OZUN, A. CIFTER (2007). Estimating portfolio risk with conditional Joe-Clayton copula: An empirical analysis with Asian equity markets. IUP Journal of Financial Economics, 5, pp. 28-41.
[158] A. J. PATTON (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, pp. 4-18. · Zbl 1244.62085
[159] G. PETTERE, T. KOLLO (2011). Risk modeling for future cash flow using skew t -copula. Communications in Statistics - Theory and Methods, 40, pp. 2919-2925. · Zbl 1284.62641
[160] J. PICKANDS (1981). Multivariate extreme value distributions (with discussion). Bulletin of the International Statistical Institute, 49, pp. 859-878. · Zbl 0518.62045
[161] R. L. PLACKETT (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60, pp. 516-522.
[162] D. PRANGE, W. SCHERER (2009). Correlation smile matching for collateralized debt obligation tranches with a-stable distributions and fitted Archimedean copula models. Quantitative Finance, 9, pp. 439-449. · Zbl 1182.91077
[163] C. PRAPROM, S. SRIBOONCHITTA (2014). Extreme value copula analysis of dependencies between exchange rates and exports of Thailand. In V. N. HUYNH, V. KREINOVICH, S. SRIBOONCHITTA (eds.), Modeling Dependence in Econometrics. Springer Verlag, New York, pp. 187-199.
[164] A. E. RAFTERY (1984). A continuous multivariate exponential distribution. Communications in Statistics - Theory and Methods, 13, pp. 947-965. · Zbl 0552.62037
[165] M. RAM, S. B. SINGH (2010). Availability, MTTF and cost analysis of complex system under preemptive-repeat repair discipline using Gumbel-Hougaard family copula. International Journal of Quality and Reliability Management, 27, pp. 576-595.
[166] M. J. REDDY, P. GANGULI (2012). Risk assessment of hydroclimatic variability on groundwater levels in the Manjara basin aquifer in India using Archimedean copulas. Journal of Hydrologic Engineering, 17, pp. 1345-1357.
[167] P. RESSEL (2013). Homogeneous distributions and a spectral representation of classical mean values and stable tail dependence functions. Journal of Multivariate Analysis, 117, pp. 246-256. · Zbl 1283.60021
[168] O. ROCH, A. ALEGRE (2006). Testing the bivariate distribution of daily equity returns using copulas: An application to the Spanish stock market. Computational Statistics and Data Analysis, 51, pp. 1312-1329. · Zbl 1157.62526
[169] J. A. RODRÍGUEZ-LALLENA, M. ÚBEDA FLORES (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, pp. 315-325. · Zbl 1102.62054
[170] J. F. ROSCO, H. JOE (2013). Measures of tail asymmetry for bivariate copulas. Statistical Papers, 54, pp. 709-726. · Zbl 1307.62157
[171] L. RÜSCHENDORF (2009). On the distributional transform, Sklar’s theorem and the empirical copula process. Journal of Statistical Planning and Inference, 139, pp. 3921-3927. · Zbl 1171.60313
[172] L. RÜSCHENDORF (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer Verlag, Heidelberg. · Zbl 1266.91001
[173] L. RÜSCHENDORF, B. SCHWEIZER, M. D. TAYLOR (1996). Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Seattle, Washington. · Zbl 0944.60012
[174] G. SALVADORI, C. DE MICHELE (2004a). Analytical calculation of storm volume statistics involving Pareto-like intensity-duration marginals. Geophysical Research Letters, 31. ID L04502.
[175] G. SALVADORI, C. DE MICHELE (2004b). Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resources Research, 40. W12511.
[176] G. SALVADORI, C. DEMICHELE (2006). Statistical characterization of temporal structure of storms. Advances inWater Resources, 29, pp. 827-842.
[177] G. SALVADORI, C. DE MICHELE (2010). Multivariate multiparameter extreme value models and return periods: A copula approach. Water Resources Research, 46. W10501.
[178] G. SALVADORI, C. DE MICHELE (2015). Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. Journal of Hydrology, 526, pp. 101-115.
[179] G. SALVADORI, C. DE MICHELE, F. DURANTE (2011). On the return period and design in a multivariate framework. Hydrology and Earth System Sciences, 15, pp. 3293-3305.
[180] G. SALVADORI, C. DE MICHELE, N. T. KOTTEGODA, R. ROSSO (2007). Extremes in Nature. An Approach Using Copulas. Springer Verlag, Dordrecht.
[181] G. SALVADORI, F. DURANTE, C. DE MICHELE (2013). Multivariate return period calculation via survival functions. Water Resources Research, 49, pp. 2308-2311.
[182] G. SALVADORI, F. DURANTE, C. DE MICHELE, M. BERNARDI, L. PETRELLA (2016). A multivariate copula-based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research, 52, pp. 3701-3721.
[183] G. SALVADORI, F. DURANTE, G. R. TOMASICCHIO, F. DALESSANDRO (2015). Practical guidelines for the multivariate assessment of the structural risk in coastal and offshore engineering. Coastal Engineering, 95, pp. 77-83.
[184] G. SALVADORI, G. R. TOMASICCHIO, F. DALESSANDRO (2014). Practical guidelines for multivariate analysis and design in coastal and offshore engineering. Coastal Engineering, 88, pp. 1-14.
[185] A. SANCETTA, S. E. SATCHELL (2004). Bernstein copula and its applications to modelling and approximations of multivariate distributions. Econometric Theory, 20, pp. 535-562. · Zbl 1061.62080
[186] M. A. SANFINS, G. VALLE (2012). On the copula for multivariate extreme value distributions. Brazilian Journal of Probability and Statistics, 26, pp. 288-305. · Zbl 1239.62062
[187] O. V. SARMANOV (1966). Generalized normal correlation and two-dimensional Fréchet classes. Doklady Akademii Nauk SSSR, 168, pp. 596-599. · Zbl 0203.20001
[188] C. SAVU, M. TREDE (2010). Hierarchies of Archimedean copulas. Quantitative Finance, 10, pp. 295-304. · Zbl 1270.91086
[189] B. SCHMELZER (2015). Sklar’s theorem for minitive belief functions. International Journal of Approximate Reasoning, 63, pp. 48-61. · Zbl 1346.68208
[190] V. SCHMITZ (2004). Revealing the dependence structure between x(1) and x(n). Journal of Statistical Planning and Inference, 123, pp. 41-47. · Zbl 1095.62073
[191] B. SCHWEIZER (1991). Thirty years of copulas. In G. DALL’AGLIO, S. KOTZ, G. SALINETTI (eds.), Probability Distributions with Given Marginals. Kluwer, Dordrecht, pp. 13-50. · Zbl 0727.60001
[192] B. SCHWEIZER, A. SKLAR (2005). Probabilistic Metric Spaces. Dover, Mineola, New York. · Zbl 0546.60010
[193] C. SEMPI (2016). Copulae of processes related to the Brownian motion: A brief survey. In S. SAMINGER-PLATZ, R. MESIAR (eds.), On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory, Studies in Fuzziness and Soft Computing. Springer International Publishing, Switzerland, pp. 173-180.
[194] A. SHAMIRI,N. A.HAMZAH, A. PIRMORADIAN (2011). Tail dependence estimate in financial market risk management: Clayton-Gumbel copula approach. Sains Malaysiana, 40, pp. 927-935. · Zbl 1229.91365
[195] J. H. SHIH, T. A. LOUIS (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 51, pp. 1384-1399. · Zbl 0869.62083
[196] A. SKLAR (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8, pp. 229-231. · Zbl 0100.14202
[197] S. SONG, V. P. SINGH (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24, pp. 783-805.
[198] W. SUN, S. RACHEV, S. V. STOYANOV, F. J. FABOZZI (2008). Multivariate skewed Student’s t copula in the analysis of nonlinear and asymmetric dependence in the German equity market. Studies in Nonlinear Dynamics and Econometrics, 12. · Zbl 1193.91183
[199] J. A. TAWN (1988). Bivariate extreme value theory: Models and estimation. Biometrika, 75, pp. 397-415. · Zbl 0653.62045
[200] A. WANG (2007). The analysis of bivariate truncated data using the Clayton copula model. International Journal of Biostatistics, 3, pp. 1557-4679. · Zbl 1136.62402
[201] G. WEI, T. HU (2002). Supermodular dependence ordering on a class of multivariate copulas. Statistics and Probability Letters, 57, pp. 375-385. · Zbl 1005.60037
[202] N. WHELAN (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, pp. 339-352. · Zbl 1409.62108
[203] C. WONG (2013). A comparison between the Gumbel-Hougaard and distorted Frank copulas for drought frequency analysis. International Journal of Hydrology Science and Technology, 3, pp. 77-91.
[204] K. XIE, Y. LI, W. LI (2012). Modelling wind speed dependence in system reliability assessment using copulas. IET Renewable Power Generation, 6, pp. 392-399.
[205] J. YANG, Y. QI, R. WANG (2009). A class of multivariate copulas with bivariate Fréchet marginal copulas. Insurance: Mathematics and Economics, 45, pp. 139-147. · Zbl 1231.91253
[206] X. YANG, E. W. FREES, Z. ZHANG (2011). A generalized beta copula with applications in modeling multivariate long-tailed data. Insurance: Mathematics and Economics, 49, pp. 265-284. · Zbl 1218.62049
[207] J. YU, K. CHEN, J. MORI, M. M. RASHID (2013). A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction. Energy, 61, pp. 673-686.
[208] H. ZHANG, J. ZHANG, M. KUWANO (2012). An integrated model of tourists’ time use and expenditure behaviour with self-selection based on a fully nested Archimedean copula function. Tourism Management, 33, pp. 1562-1573.
[209] L. ZHANG, V. P. SINGH (2007a). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332, pp. 93-109.
[210] L. ZHANG, V. P. SINGH (2007b). Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12, pp. 431-439.
[211] Z. ZHANG (2009). On approximating max-stable processes and constructing extremal copula functions. Statistical Inference for Stochastic Processes, 12, pp. 89-114. · Zbl 1205.60102
[212] Y. ZHENG, J.YANG, J. Z.HUANG (2011). Approximation of bivariate copulas by patched bivariate Fréchet copulas. Insurance: Mathematics and Economics, 48, pp. 246-256. · Zbl 1232.62081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.