×

On distinct finite covers of 3-manifolds. (English) Zbl 1473.57061

In this paper, the authors study which compact \(3\)-manifold \(M\) with empty or toroidal boundary has the following property: any two connected finite covers of \(M\) of the same degree are homeomorphic to each other.
For a group \(G\), \(s_n(G)\) denotes the number of index-\(n\) subgroups of \(G\), and \(e_n(G)\) denotes the number of isomorphism types of index-\(n\) subgroups of \(G\). The study of \(s_n(G)\) has attracted the interest of many mathematicians, while studying \(e_n(G)\) is a more sensitive problem. An analogy of \(e_n(G)\) for manifolds is the following notation. For a connected manifold \(M\), \(e_n(M)\) denotes the number of homeomorphism types of connected \(n\)-sheeted covers of \(M\). In this paper, a manifold \(M\) is called exceptional if \(e_n(M)=0\) or \(1\) for all \(n\in \mathbb{N}\), thus any two connected \(n\)-sheeted covers of \(M\) are homeomorphic to each other.
It is straightforward to see that all closed orientable surfaces are exceptional. The main result in this paper (Theorem 1.2) classifies all compact exceptional \(3\)-manifolds with empty or tori boundary, which are: connected sums of \(S^1\times S^2\), \(S^1\tilde{\times} S^2\), \(S^1\times D^2\), \(T^2\times I\), \(T^3\), certain closed \(3\)-manifolds with finite fundamental groups.
It is not hard to see the above \(3\)-manifolds are exceptional, except for the last case, whose proof requires some argument on finite groups. To prove that all other compact \(3\)-manifolds are not exceptional, the authors did a case-by-case argument, and a nice flow chart can be found on Page 814. The proof consists of the following cases: hyperbolic \(3\)-manifolds (Section 4), Euclidean \(3\)-manifolds (Section 5), spherical \(3\)-manifolds (Section 6), Seifert \(3\)-manifolds not in Sections 5 or 6 (Section 7), Sol \(3\)-manifolds (Section 8), \(3\)-manifolds with nontrivial JSJ decomposition or nontrivial boundary (Section 9), nonorientable or non-prime \(3\)-manifolds (Section 10).
Besides the main result, the authors also prove several relevant results, including:
An estimate of \(e_n(G)\) for Fuchsian groups that have finite covolume and contain torsion elements (Proposition 2.2).
If \(G\) is an irreducible lattice in a semisimple linear Lie group not locally isomorphic to \(PGL_2(\mathbb{R})\), then \(G\) is not exceptional (Proposition 4.2).
If \(G\) is a hyperbolic \(3\)-manifold group, then \(\limsup e_n(G)=\infty\), and these non-isomorphic subgroups of same index can be realized by normal subgroups (Proposition 4.5).
If \(G\) is a lattice in the isometry group of an Euclidean space, then \(G\) is exceptional if and only if \(G\) is free abelian (Proposition 5.2).

MSC:

57M10 Covering spaces and low-dimensional topology
57K30 General topology of 3-manifolds

References:

[1] M. ASCHENBRENNER, S. FRIEDL, AND H. WILTON, 3-manifold Groups, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2015. http:// dx.doi.org/10.4171/154. MR3444187. · Zbl 1326.57001 · doi:10.4171/154.MR3444187
[2] I. AGOL, The virtual Haken conjecture, with appendix by I. Agol, D. Groves, and J. Man-ning, Doc. Math. 18 (2013), 1045-1087. http://dx.doi.org/10.1016/j.procs.2013. 05.269. MR3104553. · Zbl 1286.57019 · doi:10.1016/j.procs.2013.05.269.MR3104553
[3] L. AUSLANDER, An account of the theory of crystallographic groups, Proc. Amer. Math. Soc. 16 (1965), 1230-1236. http://dx.doi.org/10.2307/2035904. MR185012. · Zbl 0133.28605 · doi:10.2307/2035904.MR185012
[4] M. BURGER, T. GELANDER, A. LUBOTZKY, AND S. MOZES, Counting hyperbolic manifolds, Geom. Funct. Anal. 12 (2002), no. 6, 1161-1173. http://dx.doi.org/10. 1007/s00039-002-1161-1. MR1952926. · Zbl 1029.57021 · doi:10.4171/154
[5] M. BELOLIPETSKY, T. GELANDER, A. LUBOTZKY, AND A. SHALEV, Counting arith-metic lattices and surfaces, Ann. of Math. (2) 172 (2010), no. 3, 2197-2221. http://dx. doi.org/10.4007/annals.2010.172.2197. MR2726109. · Zbl 1214.22002 · doi:10.2307/2035904
[6] D. COOPER, D. D. LONG, AND A. W. REID, Essential closed surfaces in bounded 3-manifolds, J. Amer. Math. Soc. 10 (1997), no. 3, 553-563. http://dx.doi.org/10.1090/ S0894-0347-97-00236-1. MR1431827. · Zbl 0896.57009 · doi:10.1007/s00039-002-1161-1
[7] J. H. CONWAY AND J. P. ROSSETTI, Describing the platycosms (November 2003), preprint, available at http://arxiv.org/abs/arXiv:math/0311476.
[8] J. D. DIXON, M. P. F. DU SAUTOY, A. MANN, AND D. SEGAL, Analytic pro-p Groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. http://dx.doi.org/10.1017/CBO9780511470882. MR1720368. · Zbl 0896.57009 · doi:10.1090/S0894-0347-97-00236-1
[9] J. D. DIXON, The probability of generating the symmetric group, Math. Z. 110 (1969), 199-205. http://dx.doi.org/10.1007/BF01110210. MR251758. · Zbl 0176.29901 · doi:10.1007/BF01110210.MR251758
[10] J. M. DE KONINCK AND F. LUCA, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Prov-idence, RI, 2012. http://dx.doi.org/10.1090/gsm/134. MR2919246. · Zbl 1247.11001 · doi:10.1017/CBO9780511470882
[11] D. LIMA GONÇ ALVES AND J. GUASCHI, The Classification of the Virtually Cyclic Sub-groups of the Sphere Braid Groups, Springer Briefs in Mathematics, Springer, Cham, 2013. http://dx.doi.org/10.1007/978-3-319-00257-6. MR3112976. · Zbl 0176.29901 · doi:10.1007/BF01110210
[12] D. GOLDFELD, A. LUBOTZKY, AND L. PYBER, Counting congruence subgroups, Acta Math. 193 (2004), no. 1, 73-104. http://dx.doi.org/10.1007/BF02392551. MR2155032. · Zbl 1159.20329 · doi:10.1007/BF02392551.MR2155032
[13] J. HEMPEL, Residual finiteness for 3-manifolds, Combinatorial Group Theory and Topology (Alta, UT, 1984), Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379-396. MR895623. · Zbl 0772.57002 · doi:10.1007/978-3-319-00257-6
[14] , 3-manifolds, Reprint of the 1976 original, AMS Chelsea Publishing, Providence, RI, 2004. http://dx.doi.org/10.1090/chel/349. MR2098385. · Zbl 1159.20329 · doi:10.1007/BF02392551
[15] H. HOPF, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926), no. 1, 313-339 (German). http://dx.doi.org/10.1007/BF01206614. MR1512281. · doi:10.1007/BF01206614.MR1512281
[16] W. HANTZSCHE AND H. WENDT, Dreidimensionale euklidische Raumformen, Math. Ann. 110 (1935), no. 1, 593-611 (German). http://dx.doi.org/10.1007/BF01448045. MR1512956. · doi:10.1007/BF01448045.MR1512956
[17] A. LUBOTZKY AND N. NIKOLOV, Subgroup growth of lattices in semisimple Lie groups, Acta Math. 193 (2004), no. 1, 105-139. http://dx.doi.org/10.1007/BF02392552. MR2155033. · Zbl 1145.22004 · doi:10.1090/chel/349
[18] A. LUBOTZKY AND D. SEGAL, Subgroup Growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8965-0. MR1978431. · Zbl 1071.20033
[19] M. W. LIEBECK AND A. SHALEV, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), no. 2, 552-601. http:// dx.doi.org/10.1016/S0021-8693(03)00515-5 . MR2058457. · Zbl 1068.20052
[20] A. LUBOTZKY, Subgroup growth and congruence subgroups, Invent. Math. 119 (1995), no. 2, 267-295. http://dx.doi.org/10.1007/BF01245183. MR1312501. · Zbl 0848.20036 · doi:10.1007/978-3-0348-8965-0
[21] A. MALCEV, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 405-422 (Russian, with English summary). MR0003420. · JFM 66.0088.03
[22] G. A. MARGULIS, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. http://dx.doi.org/10.1007/978-3-642-51445-6. MR1090825. · Zbl 0732.22008 · doi:10.1016/S0021-8693(03)00515-5
[23] S. MARSHALL, Endoscopy and cohomology growth on U(3), Compos. Math. 150 (2014), no. 6, 903-910. http://dx.doi.org/10.1112/S0010437X13007720. MR3223876. · Zbl 0848.20036 · doi:10.1007/BF01245183
[24] J. MILNOR, Groups which act on S n without fixed points, Amer. J. Math. 79 (1957), 623-630. http://dx.doi.org/10.2307/2372566. MR90056. · Zbl 0078.16304 · doi:10.2307/2372566.MR90056
[25] G. D. MOSTOW, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. HautesÉtudes Sci. Publ. Math. 34 (1968), 53-104. MR236383. · Zbl 0189.09402 · doi:10.1007/978-3-642-51445-6
[26] , Strong Rigidity of Locally Symmetric Spaces, Vol. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. Annals of Mathematics Studies. MR0385004. · Zbl 0265.53039 · doi:10.1112/S0010437X13007720
[27] T. W. MÜLLER AND J. C. PUCHTA, Character theory of symmetric groups and subgroup growth of surface groups, J. London Math. Soc. (2) 66 (2002), no. 3, 623-640. http://dx. doi.org/10.1112/S0024610702003599. MR1934296. · Zbl 1059.20021 · doi:10.2307/2372566
[28] C. MACLACHLAN AND A. W. REID, The Arithmetic of Hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. http://dx.doi.org/ 10.1007/978-1-4757-6720-9. MR1937957. · Zbl 1025.57001 · doi:10.1007/978-1-4757-6720-9.MR1937957
[29] W. H. MEEKS III AND P. SCOTT, Finite group actions on 3-manifolds, Invent. Math. 86 (1986), no. 2, 287-346. http://dx.doi.org/10.1007/BF01389073. MR856847. · Zbl 0626.57006 · doi:10.1007/BF01389073.MR856847
[30] T. W. MÜLLER AND J. C. SCHLAGE-PUCHTA, Classification and statistics of finite index subgroups in free products, Adv. Math. 188 (2004), no. 1, 1-50. http://dx.doi.org/10. 1016/j.aim.2003.09.005. MR2083091. · Zbl 1063.20027 · doi:10.1112/S0024610702003599
[31] M. B. NATHANSON, Elementary Methods in Number Theory, Graduate Texts in Mathemat-ics, vol. 195, Springer-Verlag, New York, 2000. MR1732941. · Zbl 0953.11002 · doi:10.1007/978-1-4757-6720-9
[32] M. V. NORI, On subgroups of GL n (F p ), Invent. Math. 88 (1987), no. 2, 257-275. http:// dx.doi.org/10.1007/BF01388909. MR880952. · Zbl 0632.20030 · doi:10.1007/BF01389073
[33] W. NOWACKI, Die euklidischen, dreidimensionalen, geschlossenen und offenen Raumformen, Comment. Math. Helv. 7 (1934), no. 1, 81-93 (German). http://dx.doi.org/10.1007/ BF01292710. MR1509502. · Zbl 1063.20027 · doi:10.1016/j.aim.2003.09.005
[34] P. ORLIK, Seifert Manifolds, Lecture Notes in Mathematics, vol. 291, Springer-Verlag, Berlin-New York, 1972. MR0426001. · Zbl 0263.57001
[35] G. PRASAD, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255-286. http:// dx.doi.org/10.1007/BF01418789. MR385005. · Zbl 0632.20030 · doi:10.1007/BF01388909
[36] K. REIDEMEISTER, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 102-109 (German). http://dx.doi.org/10.1007/BF02940717. MR3069647. · Zbl 0010.37604 · doi:10.1007/BF01292710
[37] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487. http://dx.doi.org/10.1112/blms/15.5.401. MR705527. · Zbl 0561.57001 · doi:10.1112/blms/15.5.401.MR705527
[38] , There are no fake Seifert fibre spaces with infinite π 1 , Ann. of Math. (2) 117 (1983), no. 1, 35-70. http://dx.doi.org/10.2307/2006970. MR683801. · Zbl 0516.57006 · doi:10.1007/BF01418789
[39] G. A. SWARUP, Projective planes in irreducible 3-manifolds, Math. Z. 132 (1973), 305-317. http://dx.doi.org/10.1007/BF01179736. MR322883. · Zbl 0249.57003 · doi:10.1007/BF01179736.MR322883
[40] F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. http://dx.doi.org/10.2307/1970594. MR224099. · Zbl 0157.30603 · doi:10.2307/1970594.MR224099
[41] B. WEISFEILER, Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2) 120 (1984), no. 2, 271-315. http://dx.doi.org/10.2307/ 2006943. MR763908. · Zbl 0568.14025 · doi:10.2307/2006943.MR763908
[42] H. WILTON AND P. ZALESSKII, Profinite properties of graph manifolds, Geom. Dedicata 147 (2010), 29-45. http://dx.doi.org/10.1007/s10711-009-9437-3. MR2660565. · Zbl 1204.57019 · doi:10.1007/BF01179736
[43] B. ZIMMERMANN, A note on hyperbolic 3-manifolds of the same volume, Monatsh. Math. 117 (1994), no. 1-2, 139-143. http://dx.doi.org/10.1007/BF01299317. MR1266779. · Zbl 0789.57008 · doi:10.2307/1970594
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.