×

The density of expected persistence diagrams and its kernel based estimation. (English) Zbl 1473.55002

Speckmann, Bettina (ed.) et al., 34th international symposium on computational geometry, SoCG 2018, June 11–14, 2018, Budapest, Hungary. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 99, Article 26, 15 p. (2018).
Summary: Persistence diagrams play a fundamental role in Topological Data Analysis where they are used as topological descriptors of filtrations built on top of data. They consist in discrete multisets of points in the plane \(\mathbb{R}^2\) that can equivalently be seen as discrete measures in \(\mathbb{R}^2\). When the data come as a random point cloud, these discrete measures become random measures whose expectation is studied in this paper. First, we show that for a wide class of filtrations, including the Čech and Rips-Vietoris filtrations, the expected persistence diagram, that is a deterministic measure on \(\mathbb{R}^2\), has a density with respect to the Lebesgue measure. Second, building on the previous result we show that the persistence surface recently introduced in [H. Adams et al., J. Mach. Learn. Res. 18, Paper No. 8, 35 p. (2017; Zbl 1431.68105)] can be seen as a kernel estimator of this density. We propose a cross-validation scheme for selecting an optimal bandwidth, which is proven to be a consistent procedure to estimate the density.
For the entire collection see [Zbl 1390.68027].

MSC:

55N31 Persistent homology and applications, topological data analysis
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Citations:

Zbl 1431.68105
Full Text: DOI

References:

[1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: a stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8):1-35, 2017. ##img## · Zbl 1431.68105
[2] Christophe Biscio and Jesper Møller. The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications. arXiv preprint arXiv:1611.00630, 2016. ##img## · Zbl 07499085
[3] Omer Bobrowski, Matthew Kahle, Primoz Skraba, et al. Maximally persistent cycles in random geometric complexes. The Annals of Applied Probability, 27(4):2032-2060, 2017. ##img## · Zbl 1377.60024
[4] Peter Bubenik. Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 16(1):77-102, 2015. ##img## · Zbl 1337.68221
[5] Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust persistent homology for measures. Computational Geometry, 58:70-96, 2016. ##img## · Zbl 1357.65022
[6] F. Chazal, D. Cohen-Steiner, L. J. Guibas, F. Memoli, and S. Y. Oudot. Gromov-hausdorff stable signatures for shapes using persistence. Computer Graphics Forum (proc. SGP 2009), pages 1393-1403, 2009. ##img##
[7] F. Chazal, V. de Silva, and S. Oudot. Persistence stability for geometric complexes. Geometriae Dedicata, 173(1):193-214, 2014. ##img## · Zbl 1320.55003
[8] Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. SpringerBriefs in Mathematics. Springer, 2016. ##img## · Zbl 1362.55002
[9] Frédéric Chazal and Vincent Divol. The density of expected persistence diagrams and its kernel based estimation. Extended version of a paper to appear in the proceedings of the Symposium of Computational Geometry 2018, 2018. URL: https://hal.archives-ouvertes.fr/hal-01716181. · Zbl 1473.55002
[10] Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman. Stochastic convergence of persistence landscapes and silhouettes. In Proceedings of the thirtieth annual symposium on Computational geometry, page 474. ACM, 2014. ##img## · Zbl 1395.62187
[11] Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence rates for persistence diagram estimation in topological data analysis. Journal of Machine Learning Research, 16:3603-3635, 2015. URL: http://jmlr.org/papers/v16/chazal15a.html. · Zbl 1351.62009
[12] Yen-Chi Chen, Daren Wang, Alessandro Rinaldo, and Larry Wasserman. Statistical analysis of persistence intensity functions. arXiv preprint arXiv:1510.02502, 2015. ##img##
[13] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete &Computational Geometry, 37(1):103-120, 2007. ##img## · Zbl 1117.54027
[14] HSM Coxeter. The circumradius of the general simplex. The Mathematical Gazette, pages 229-231, 1930. ##img## · JFM 56.0578.01
[15] Trinh Khanh Duy, Yasuaki Hiraoka, and Tomoyuki Shirai. Limit theorems for persistence diagrams. arXiv preprint arXiv:1612.08371, 2016. ##img## · Zbl 1402.60059
[16] B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan, A. Singh, et al. Confidence sets for persistence diagrams. The Annals of Statistics, 42(6):2301-2339, 2014. ##img## · Zbl 1310.62059
[17] D. Morozov H. Edelsbrunner. Persistent homology. In Handbook of Discrete and Computational Geometry (3rd Ed - To appear). CRC Press (to appear), 2017. ##img## · Zbl 1423.55005
[18] Matthew Kahle, Elizabeth Meckes, et al. Limit the theorems for betti numbers of random simplicial complexes. Homology, Homotopy and Applications, 15(1):343-374, 2013. ##img## · Zbl 1268.05180
[19] Genki Kusano, Kenji Fukumizu, and Yasuaki Hiraoka. Kernel method for persistence diagrams via kernel embedding and weight factor. arXiv preprint arXiv:1706.03472, 2017. ##img## · Zbl 1472.62179
[20] Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted gaussian kernel for topological data analysis. In International Conference on Machine Learning, pages 2004-2013, 2016. ##img## · Zbl 1472.62179
[21] Claire Lacour, Pascal Massart, and Vincent Rivoirard. Estimator selection: a new method with applications to kernel density estimation. arXiv preprint arXiv:1607.05091, 2016. ##img## · Zbl 06822894
[22] Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes. Springer Science &Business Media, 2013. ##img## · Zbl 1226.60003
[23] F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Elsevier Science, 2016. ##img## · Zbl 1338.49089
[24] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for topological machine learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4741-4748, 2015. ##img##
[25] M. Shiota. Geometry of Subanalytic and Semialgebraic Sets. Progress in mathematics. Springer, 1997. ##img## · Zbl 0889.32006
[26] Charles J Stone. An asymptotically optimal window selection rule for kernel density estimates. The Annals of Statistics, pages 1285-1297, 1984. ##img## · Zbl 0599.62052
[27] Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for distributions of persistence diagrams. Discrete &Computational Geometry, 52(1):44-70, 2014. ##img## · Zbl 1296.68182
[28] Yuhei Umeda. Time series classification via topological data analysis. Transactions of the Japanese Society for Artificial Intelligence, 32(3):D-G72_1, 2017. ##img##
[29] D Yogeshwaran, Robert J Adler, et al. On the topology of random complexes built over stationary point processes. The Annals of Applied Probability, 25(6):3338-3380, 2015. ##img## · Zbl 1328.60123
[30] D. Yogeshwaran, Eliran Subag, and Robert J. Adler. Random geometric complexes in the thermodynamic regime. Probability Theory and Related Fields, 167(1):107-142, Feb 2017. URL: http://dx.doi.org/10.1007/s00440-015-0678-9. · Zbl 1366.60033 · doi:10.1007/s00440-015-0678-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.