×

Invariant measures of fractional stochastic delay reaction-diffusion equations on unbounded domains. (English) Zbl 1473.37097

Summary: In this paper, existence of invariant measure is mainly investigated for a fractional stochastic delay reaction-diffusion equation defined on unbounded domains. We first establish the mean-square uniform smallness of the tails of the solutions in order to overcome the non-compactness of standard Sobolev embeddings on unbounded domains. We then show the weak compactness of a family of probability distributions of the solutions by combining the Ascoli-Arzelà theorem, the uniform tail-estimates as well as the technique of dyadic division.

MSC:

37L55 Infinite-dimensional random dynamical systems; stochastic equations
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Abe, S.; Thurner, S., Anomalous diffusion in view of Einstein’s 1905 theory of Brownian motion, Physica A, 356, 403-407 (2005) · doi:10.1016/j.physa.2005.03.035
[2] Assing, S.; Manthey, R., Invariant measures for stochastic heat equations with unbounded coefficients, Stoch. Process. Their Appl., 103, 237-256 (2003) · Zbl 1075.60542 · doi:10.1016/s0304-4149(02)00211-9
[3] Brzezniak, Z.; Ondrejat, M.; Seidler, J., Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equ., 260, 4157-4179 (2016) · Zbl 1338.35419 · doi:10.1016/j.jde.2015.11.007
[4] Brzezniak, Z.; Motyl, E.; Ondrejat, M., Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Probab., 45, 3145-3201 (2017) · Zbl 1388.60107 · doi:10.1214/16-aop1133
[5] Butkovsky, O.; Scheutzow, M., Invariant measures for stochastic functional differential equations, Electron. J. Probab., 22, 1-23 (2017) · Zbl 1382.34084 · doi:10.1214/17-ejp122
[6] Caraballo, T.; Garrido-Atienza, M. J.; Schmalfuss, B., Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18, 271-293 (2007) · Zbl 1125.60058 · doi:10.3934/dcds.2007.18.271
[7] Caraballo, T.; Garrido-Atienza, M. J.; Taniguchi, T., The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. Theory Methods Appl., 74, 3671-3684 (2011) · Zbl 1218.60053 · doi:10.1016/j.na.2011.02.047
[8] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0761.60052
[9] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[10] Es-Sarhir, A.; Scheutzow, M.; van Gaans, O., Invariant measures for stochastic functional differential equations with superlinear drift term, Differ. Integr. Equ., 23, 189-200 (2010) · Zbl 1240.34396
[11] Garrido-Atienza, M. J.; Ogrowsky, A.; Schmalfuss, B., Random differential equations with random delays, Stochast. Dynam., 11, 369-388 (2011) · Zbl 1270.34182 · doi:10.1142/s0219493711003358
[12] Gal, C.; Warma, M., Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Contin. Dyn. Syst., 36, 1279-1319 (2016) · Zbl 1334.35387 · doi:10.3934/dcds.2016.36.1279
[13] Garroni, A.; Müller, S., A variational model for dislocations in the line tension limit, Arch. Ration. Mech. Anal., 181, 535-578 (2006) · Zbl 1158.74365 · doi:10.1007/s00205-006-0432-7
[14] Gopalsamy, K., Stability and Oscillation in Delay Differential Equations of Population Dynamics (1992), Dordrecht: Kluwer, Dordrecht · Zbl 0752.34039
[15] Gu, A.; Li, D.; Wang, B.; Yang, H., Regularity of random attractors for fractional stochastic reaction-diffusion equations on \(####\), J. Differ. Equ., 264, 7094-7137 (2018) · Zbl 1388.35231 · doi:10.1016/j.jde.2018.02.011
[16] Guan, Q-Y, Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., 266, 289-329 (2006) · Zbl 1121.60051 · doi:10.1007/s00220-006-0054-9
[17] Guan, Q-Y; Ma, Z-M, Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theor. Relat. Fields, 134, 649-694 (2006) · Zbl 1089.60030 · doi:10.1007/s00440-005-0438-3
[18] Guan, Q-Y; Ma, Z-M, Boundary problems for fractional Laplacians, Stochast. Dynam., 05, 385-424 (2005) · Zbl 1077.60036 · doi:10.1142/s021949370500150x
[19] Hale, J. K., Functional differential equations with infinite delays, J. Math. Anal. Appl., 48, 276-283 (1974) · Zbl 0289.34107 · doi:10.1016/0022-247x(74)90233-9
[20] Hale, J. K.; Lunel, S. M V., Introduction to Functional Differential Equations (1993), Berlin: Springer, Berlin · Zbl 0787.34002
[21] Henry, D., Geometric Theory of Semilinear Parabolic Equations, vol 840 (1981), New York: Springer, New York · Zbl 0456.35001
[22] Hino, Y.; Naito, T.; Murakami, S., Functional Differential Equations with Infinite Delay (1991), Berlin: Springer, Berlin · Zbl 0732.34051
[23] Ito, K.; Nisio, M., On stationary solutions of a stochastic differential equation, J. Math. Kyoto Univ., 4, 1-75 (1964) · Zbl 0131.16402 · doi:10.1215/kjm/1250524705
[24] Jara, M., Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Commun. Pure Appl. Math., 62, 198-214 (2009) · Zbl 1153.82015 · doi:10.1002/cpa.20253
[25] Kim, J. U., On the stochastic Burgers equation with polynomial nonlinearity in the real line, Discrete Contin. Dyn. Syst. Ser. B, 6, 835-866 (2006) · Zbl 1141.35392 · doi:10.3934/dcdsb.2006.6.835
[26] Kim, J. U., On the stochastic Benjamin-Ono equation, J. Differ. Equ., 228, 737-768 (2006) · Zbl 1107.35105 · doi:10.1016/j.jde.2005.11.005
[27] Kim, J. U., Periodic and invariant measures for stochastic wave equations, Electron. J. Differ. Equ., 2004, 1-30 (2004) · Zbl 1047.35106
[28] Kim, J. U., Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55, 687-718 (2006) · Zbl 1106.35151 · doi:10.1512/iumj.2006.55.2701
[29] Kolmanovskii, V. B.; Nosov, V. R., Stability of Functional Differential Equations (1986), New York: Academic, New York · Zbl 0593.34070
[30] Koslowski, M.; Cuitiño, A. M.; Ortiz, M., A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50, 2597-2635 (2002) · Zbl 1094.74563 · doi:10.1016/s0022-5096(02)00037-6
[31] Kuang, Y., Delay Differential Equations: with Applications in Population Dynamics (1993), New York: Academic, New York · Zbl 0777.34002
[32] Kuang, Y.; Smith, H. L., Global stability for infinite delay Lotka-Volterra type systems, J. Differ. Equ., 103, 221-246 (1993) · Zbl 0786.34077 · doi:10.1006/jdeq.1993.1048
[33] Lu, H.; Bates, P. W.; Lü, S.; Zhang, M., Dynamics of the 3D fractional complex Ginzburg-Landau equation, J. Differ. Equ., 259, 5276-5301 (2015) · Zbl 1328.35279 · doi:10.1016/j.jde.2015.06.028
[34] Lu, H.; Bates, P. W.; Xin, J.; Zhang, M., Asymptotic behavior of stochastic fractional power dissipative equations on \(####\), Nonlinear Anal., 128, 176-198 (2015) · Zbl 1337.37062 · doi:10.1016/j.na.2015.06.033
[35] Mao, X., Stochastic Differential Equations and Applications (2011), Cambridge: Woodhead Publishing Limited, Cambridge
[36] Mao, X., The LaSalle-type theorems for stochastic functional differential equations, Nonlinear Stud., 7, 307-328 (2000) · Zbl 0993.60054
[37] Mao, X., Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Process. Their Appl., 65, 233-250 (1996) · Zbl 0889.60062 · doi:10.1016/s0304-4149(96)00109-3
[38] Misiats, O.; Stanzhytskyi, O.; Yip, N. K., Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J. Theor. Probab., 29, 996-1026 (2016) · Zbl 1360.60126 · doi:10.1007/s10959-015-0606-z
[39] Mohammed, S. E A., Stochastic Functional Differential Equations (1986), London: Longmans Green, London
[40] Murray, J. D., Mathematical Biology (1993), Berlin: Springer, Berlin · Zbl 0779.92001
[41] Naito, T., On autonomous linear functional differential equations with infinite retardations, J. Differ. Equ., 21, 297-315 (1976) · Zbl 0322.34051 · doi:10.1016/0022-0396(76)90124-8
[42] Naito, T., On linear autonomous retarded equations with an abstract phase space for infinite delay, J. Differ. Equ., 33, 74-91 (1979) · Zbl 0384.34042 · doi:10.1016/0022-0396(79)90081-0
[43] Reiss, M.; Riedle, M.; van Gaans, O., Delay differential equations driven by Levy processes: stationarity and Feller properties, Stoch. Process. Appl., 116, 1409-1432 (2006) · Zbl 1109.60045 · doi:10.1016/j.spa.2006.03.002
[44] Scheutzow, M., Qualitative behaviour of stochastic delay equations with a bounded memory, Stochastics, 12, 41-80 (1984) · Zbl 0539.60061 · doi:10.1080/17442508408833294
[45] Servadei, R.; Valdinoci, E., On the spectrum of two different fractional operators, Proc. R. Soc. Edinburgh A, 144, 831-855 (2014) · Zbl 1304.35752 · doi:10.1017/s0308210512001783
[46] Servadei, R.; Valdinoci, E., Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33, 2105-2137 (2013) · Zbl 1303.35121 · doi:10.3934/dcds.2013.33.2105
[47] Wang, B., Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158, 60-82 (2017) · Zbl 1366.35229 · doi:10.1016/j.na.2017.04.006
[48] Wang, B., Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differ. Equ., 268, 1-59 (2019) · Zbl 1473.37098 · doi:10.1016/j.jde.2019.08.007
[49] Wang, R.; Shi, L.; Wang, B., Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on \(####\), Nonlinearity, 32, 4524-4556 (2019) · Zbl 1423.35419 · doi:10.1088/1361-6544/ab32d7
[50] Wang, X.; Lu, K.; Wang, B., Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14, 1018-1047 (2015) · Zbl 1317.60081 · doi:10.1137/140991819
[51] Wang, X.; Lu, K.; Wang, B., Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dyn. Differ. Equ., 28, 1309-1335 (2016) · Zbl 1353.34101 · doi:10.1007/s10884-015-9448-8
[52] Wu, F.; Yin, G., An averaging principle for two-time-scale stochastic functional differential equations, J. Differ. Equ., 269, 1037-1077 (2020) · Zbl 1442.34127 · doi:10.1016/j.jde.2019.12.024
[53] Wu, F.; Yin, G.; Mei, H., Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differ. Equ., 262, 1226-1252 (2017) · Zbl 1418.34151 · doi:10.1016/j.jde.2016.10.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.