×

Lax representations with non-removable parameters and integrable hierarchies of PDEs via exotic cohomology of symmetry algebras. (English) Zbl 1473.37088

The author considers four examples of partial differential equations with constant coefficients, including the so-called \(4\)-dimensional universal hierarchy \[ u_{zz} = u_{tx} +u_z u_{xy} - u_x u_{yz}, \] where the subscript denotes partial derivatives in the corresponding variables. Here \(u\) is a real analytic function on \(\mathbb{R}^4\). The considered equations are known to admit Lax representations with a non-removable spectral parameter \(\lambda\). In the case of the above equation, the Lax representation is given by \[ \begin{cases} v_t =\lambda^2 v_x - (\lambda u_x +u_z) v_y,\\ v_z=\lambda v_x- u_x v_y . \end{cases} \] In the four cases under study, the author shows that the Lax representations can be deduced by algebraic methods. More precisely, each equation determines an infinite-dimensional Lie algebra, the so-called contact symmetry algebra, containing as a semi-direct summand a finite-dimensional non-abelian Lie algebra. The exotic cohomology in dimension two of this algebra turns out to be non-trivial, producing non-central extensions of the contact symmetry algebra. Finally, the Lax representation arises as the Maurer-Cartan form of these extensions.

MSC:

37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K06 General theory of infinite-dimensional Hamiltonian and Lagrangian systems, Hamiltonian and Lagrangian structures, symmetries, conservation laws
35B06 Symmetries, invariants, etc. in context of PDEs

Software:

Jets

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press, Cambridge · Zbl 0762.35001
[2] Baran, H.; Krasil’shchik, I. S.; Morozov, O. I.; Vojčák, P., Five-dimensional Lax-integrable equation, its reductions and recursion operator, Lobachevskii J. Math., 36, 225-233 (2015) · Zbl 1332.35081
[3] Baran, H.; Krasil’shchik, I. S.; Morozov, O. I.; Vojčák, P., Coverings over Lax integrable equations and their nonlocal symmetries, Theoret. Math. Phys., 188, 1273-1295 (2016) · Zbl 1351.35022
[4] H. Baran, M. Marvan, Jets: A software for differential calculus on jet spaces and diffieties. Available online at http://jets.math.slu.cz; H. Baran, M. Marvan, Jets: A software for differential calculus on jet spaces and diffieties. Available online at http://jets.math.slu.cz
[5] Błaszak, M., Classical R-matrices on Poisson algebras and related dispersionless systems, Phys. Lett. A, 297, 191-195 (2002) · Zbl 0995.37059
[6] Bogdanov, L. V., Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy, J. Phys. A, 43, Article 434008 pp. (2010) · Zbl 1208.37040
[7] Bogdanov, L. V.; Pavlov, M. V., Linearly degenerate hierarchies of quasiclassical SDYM type, J. Math. Phys., 58, Article 093505 pp. (2017) · Zbl 1377.37093
[8] Cartan, É., La structure des groupes infinis, (Œuvres Complètes, Part II, 2 (1953), Gauthier - Villars: Gauthier - Villars Paris), 1335-1384
[9] Cartan, É., Les problèmes d’équivalence, (Œuvres Complètes, Part II, 2 (1953), Gauthier - Villars: Gauthier - Villars Paris), 1311-1334
[10] Cartan, É., Les sous-groupes des groupes continus de transformations, (Œuvres Complètes, Part II, 2 (1953), Gauthier - Villars: Gauthier - Villars Paris), 719-856
[11] Cartan, É., Sur la structure des groupes infinis de transformations, (Œuvres Complètes, Part II, 2 (1953), Gauthier - Villars: Gauthier - Villars Paris), 571-715
[12] Das, A., Integrable Models (1989), World Scientific: World Scientific Singapore · Zbl 0719.70011
[13] Dodd, R.; Fordy, A., The prolongation structures of quasi-polynomial flows, Proc. R. Soc. Lond. A, 385, 389-429 (1983) · Zbl 0542.35069
[14] Dunajski, M., Anti-self-dual four-manifolds with a parallel real spinor, Proc. R. Soc. Lond. A, 458, 1205-1222 (2002) · Zbl 1006.53040
[15] Dunajski, M., A class of Einstein-Weil spaces associated to an integrable system of hydrodynamic type, J. Geom. Phys., 51, 126-137 (2004) · Zbl 1110.53032
[16] Fels, M.; Olver, P. J., Moving coframes. I. A practical algorithm, Acta Appl. Math., 51, 161-213 (1998) · Zbl 0937.53012
[17] Ferapontov, E. V.; Khusnutdinova, K. R., Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability, J. Math. Phys., 45, 2365-2377 (2004) · Zbl 1071.35118
[18] Krasil’shchik, J.; Verbovetsky, A., Geometry of jet spaces and integrable systems, J. Geom. Phys., 61, 1633-1674 (2011) · Zbl 1230.58005
[19] Krasil’shchik, J.; Verbovetsky, A.; Vitolo, R., A unified approach to computation of integrable structures, Acta Appl. Math., 120, 199-218 (2012) · Zbl 1284.37052
[20] Krasil’shchik, I. S.; Vinogradov, A. M., Nonlocal symmetries and the theory of coverings, Acta Appl. Math., 2, 79-86 (1984) · Zbl 0547.58043
[21] Krasil’shchik, I. S.; Vinogradov, A. M., Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math., 15, 161-209 (1989) · Zbl 0692.35003
[22] Kruglikov, B. S.; Morozov, O. I., Integrable dispersionless PDEs in 4D, their symmetry pseudogroups and deformations, Lett. Math. Phys., 105, 1703-1723 (2015) · Zbl 1378.17046
[23] Kuz’mina, G. M., On a possibility to reduce a system of two first-order partial differential equations to a single equation of the second order, Proc. Moscow State Pedagog. Inst., 271, 67-76 (1967), (in Russian)
[24] Manakov, S. V.; Santini, P. M., Inverse scattering problem for vector fields and the Cauchy problem for the heavenly equation, Phys. Lett. A, 359, 613 (2006) · Zbl 1236.37042
[25] Manakov, S. V.; Santini, P. M., Integrable dispersionless PDEs arising as commutation condition of pairs of vector fields, J. Phys: Conf. Ser., 482, Article 012029 pp. (2014)
[26] Martínez Alonso, L.; Shabat, A. B., Energy-dependent potentials revisited: A universal hierarchy of hydrodynamic type, Phys. Lett. A, 299, 359-365 (2002) · Zbl 0996.37072
[27] Martínez Alonso, L.; Shabat, A. B., Hydrodynamic reductions and solutions of a universal hierarchy, Theoret. Math. Phys., 140, 1073-1085 (2004) · Zbl 1178.37067
[28] Mikhalev, V. G., On the Hamiltonian formalism for Korteweg—de Vries type hierarchies, Funct. Anal. Appl., 26, 2, 140-142 (1992) · Zbl 0790.58022
[29] Morozov, O. I., Moving coframes and symmetries of differential equations, J. Phys. A, 35, 2965-2977 (2002) · Zbl 1040.35003
[30] Morozov, O. I., Contact-equivalence problem for linear hyperbolic equations, J. Math. Sci., 135, 2680-2694 (2006) · Zbl 1112.35011
[31] Morozov, O. I., Contact integrable extensions of symmetry pseudo-groups and coverings of (2+1) dispersionless integrable equations, J. Geom. Phys., 59, 1461-1475 (2009) · Zbl 1186.58023
[32] Morozov, O. I., A two-component generalization of the integrable rdDym equation, SIGMA, 8, 051 (2012) · Zbl 1270.35015
[33] Morozov, O. I., The four-dimensional Martínez Alonso-Shabat equation: Differential coverings and recursion operators, J. Geom. Phys., 85, 75-80 (2014) · Zbl 1301.37044
[34] Morozov, O. I., Deformed cohomologies of symmetry pseudo-groups and coverings of differential equations, J. Geom. Phys., 113, 215-225 (2017) · Zbl 1359.58014
[35] Morozov, O. I., Deformations of infinite-dimensional Lie algebras, exotic cohomology, and integrable nonlinear partial differential equations, J. Geom. Phys., 128, 20-31 (2018) · Zbl 1387.58023
[36] S.P. Novikov, On exotic De-Rham cohomology. Perturbation theory as a spectral sequence. arXiv:math-ph/0201019; S.P. Novikov, On exotic De-Rham cohomology. Perturbation theory as a spectral sequence. arXiv:math-ph/0201019
[37] Novikov, S. P., On metric-independent exotic homology, Proc. Steklov Inst. Math., 251, 206-212 (2005) · Zbl 1119.58003
[38] Olver, P. J., Equivalence, Invariants, and Symmetry (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0837.58001
[39] Pavlov, M. V., Integrable hydrodynamic chains, J. Math. Phys., 44, 4134-4156 (2003) · Zbl 1062.37078
[40] Pavlov, M. V.; Stoilov, N., Three dimensional reductions of four-dimensional quasilinear systems, J. Math. Phys., 58, Article 111510 pp. (2017) · Zbl 1386.35043
[41] Takhtadzhyan, L. A.; Faddeev, L. D., Hamiltonian Methods in the Theory of Solitons (1987), Springer: Springer Berlin · Zbl 0632.58004
[42] (Vinogradov, A. M.; Krasil’shchik, I. S., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Transl. Math. Monogr., vol. 182 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), [in Russian], Moscow: Factorial, 2005; English transl. prev. ed.: I.S. Krasil’shchik, A.M. Vinogradov (Eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics · Zbl 0911.00032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.