×

Three types of attractors and mixed dynamics of nonholonomic models of rigid body motion. (English. Russian original) Zbl 1473.37078

Proc. Steklov Inst. Math. 308, 125-140 (2020); translation from Tr. Mat. Inst. Steklova 308, 135-151 (2020).
Summary: We survey recent results on the theory of dynamical chaos from the point of view of topological dynamics. We present the concept of three types of dynamics: conservative, dissipative, and mixed dynamics, and also show several simple examples of attractors and repellers of all three types. Their similarities and differences with other known types of attractors and repellers (maximal and Milnor ones) are discussed. We also present elements of the qualitative theory of mixed dynamics of reversible systems. As examples of such systems we consider three nonholonomic models of rigid body motion: the Suslov top, rubber disk, and Celtic stone. It is shown that they exhibit mixed dynamics of different nature; in particular, the mixed dynamics observed in the model of rubber disk is extremely difficult to distinguish from the conservative one.

MSC:

37J60 Nonholonomic dynamical systems
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
70F25 Nonholonomic systems related to the dynamics of a system of particles
70E18 Motion of a rigid body in contact with a solid surface
Full Text: DOI

References:

[1] Afonin, A. A.; Kozlov, V. V., The fall problem for a disk moving on a horizontal plane, Mech. Solids, 32, 1, 4-9 (1997)
[2] Afraimovich, V. S.; Shil’nikov, L. P.; Barenblatt, G. I.; Iooss, G.; Joseph, D. D., Strange attractors and quasiattractors, Nonlinear Dynamics and Turbulence, 1-34 (1983), Boston: Pitman, Boston · Zbl 0532.58018
[3] Anosov, D. V.; Bronshtein, I. U., Smooth dynamical systems,” Ch. 3: “Topological dynamics, Dynamical Systems-1, 1, 204-229 (1985)
[4] Arnol’d, V. I.; Afraimovich, V. S.; Il’yashenko, Yu S.; Shil’nikov, L. P., Bifurcation theory, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 5, 5-218 (1986)
[5] Astapov, I. S., On the stability of rotation of the Celtic stone, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No., 2, 97-100 (1980) · Zbl 0445.70003
[6] Bizyaev, I. A.; Borisov, A. V.; Kazakov, A. O., Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors, Regul. Chaotic Dyn., 20, 5, 605-626 (2015) · Zbl 1344.37073
[7] Bizyaev, I.; Mamaev, I. S., Dynamics of the nonholonomic Suslov problem under periodic control: Unbounded speedup and strange attractors, J. Phys. A: Math. Theor. (2020) · Zbl 1514.37087
[8] Borisov, A. V.; Kazakov, A. O.; Kuznetsov, S. P., Nonlinear dynamics of the rattleback: A nonholonomic model, Phys. Usp., 57, 453-460 (2014)
[9] Borisov, A. V.; Kazakov, A. O.; Sataev, I. R., The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top, Regul. Chaotic Dyn., 19, 6, 718-733 (2014) · Zbl 1358.70006
[10] Borisov, A. V.; Mamaev, I. S., Rigid Body Dynamics (2001), Moscow: Regular and Chaotic Dynamics, Moscow · Zbl 1004.70002
[11] Borisov, A. V.; Mamaev, I. S., Strange attractors in rattleback dynamics, Phys. Usp., 46, 393-403 (2003)
[12] Conley, C., Isolated Invariant Sets and the Morse Index (1978), Providence, RI: Am. Math. Soc., Providence, RI · Zbl 0397.34056
[13] Delshams, A.; Gonchenko, M.; Gonchenko, S. V.; Lázaro, J. T., Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies, Discrete Contin. Dyn. Syst. A, 38, 9, 4483-4507 (2018) · Zbl 1397.37052
[14] Delshams, A.; Gonchenko, S. V.; Gonchenko, V. S.; Lázaro, J. T.; Sten’kin, O., Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps, Nonlinearity, 26, 1, 1-33 (2013) · Zbl 1277.37044
[15] Dobrynskiĭ, V. A.; Sharkovskiĭ, A. N., Typicalness of dynamical systems almost all paths of which are stable under permanently acting perturbations, Sov. Math., Dokl., 14, 997-1000 (1973) · Zbl 0306.58012
[16] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O., On some new aspects of Celtic stone chaotic dynamics, Nelinein. Din., 8, 3, 507-518 (2012)
[17] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O., Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regul. Chaotic Dyn., 18, 5, 521-538 (2013) · Zbl 1417.37222
[18] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Samylina, E. A., Chaotic dynamics and multistability in the nonholonomic model of a Celtic stone, Radiophys. Quantum Electron., 61, 10, 773-786 (2019)
[19] Gonchenko, A. S.; Gonchenko, S. V.; Kazakov, A. O.; Turaev, D. V., On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotators, Physica D, 350, 45-57 (2017) · Zbl 1376.34042
[20] Gonchenko, A. S.; Samylina, E. A., On the region of existence of a discrete Lorenz attractor in the nonholo-nomic model of a Celtic stone, Radiophys. Quantum Electron., 62, 5, 369-384 (2019)
[21] Gonchenko, S. V., Reversible mixed dynamics: A concept and examples, Discontin. Nonlinearity Complex., 5, 4, 365-374 (2016) · Zbl 1356.37043
[22] Gonchenko, S. V.; Gonchenko, M. S.; Sinitsky, I. O., On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles, Izv. Math., 84, 1, 23-51 (2020) · Zbl 1443.37022
[23] S. V. Gonchenko, A. O. Kazakov, and D. Turaev, “Wild pseudohyperbolic attractors in a four-dimensional Lorenz system,” arXiv: 1809.07250 [math.DS]. · Zbl 1472.34106
[24] Gonchenko, S. V.; Lamb, J. S W.; Rios, I.; Turaev, D., Attractors and repellers near generic elliptic points of reversible maps, Dokl. Math., 89, 1, 65-67 (2014) · Zbl 1301.37013
[25] Gonchenko, S. V.; Shilnikov, L. P.; Stenkin, O. V., On Newhouse regions with infinitely many stable and unstable invariant tori, Progress in Nonlinear Science: Proc. Int. Conf., Nizhni Novgorod, 2001, 1, 80-102 (2002)
[26] Gonchenko, S. V.; Shil’nikov, L. P.; Turaev, D. V., Quasiattractors and homoclinic tangencies, Comput. Math. Appl., 34, 2-4, 195-227 (1997) · Zbl 0889.58056
[27] Gonchenko, S. V.; Shilnikov, L. P.; Turaev, D. V., On dynamical properties of multidimensional diffeomor-phisms from Newhouse regions. I, Nonlinearity, 21, 5, 923-972 (2008) · Zbl 1160.37019
[28] Gonchenko, S. V.; Stenkin, O. V., On the mixed dynamics of systems from Newhouse regions with heteroclinic tangencies, Proc. Final Sci. Conf. of Educ. Sci. Innov. Complex “Models, Methods and Software,” Nizhni Novgorod, 2007, 101-102 (2007), Nizhni Novgorod: Izd. Nizhegor. Gos. Univ., Nizhni Novgorod
[29] Gonchenko, S. V.; Turaev, D. V., On three types of dynamics and the notion of attractor, Proc. Steklov Inst. Math., 297, 116-137 (2017) · Zbl 1377.37040
[30] Gonchenko, S. V.; Turaev, D. V.; Shil’nikov, L. P., On the existence of Newhouse domains in a neighborhood of systems with a structurally unstable Poincar´e homoclinic curve (the higher-dimensional case), Dokl. Math., 47, 2, 268-273 (1993) · Zbl 0823.58030
[31] Gonchenko, S. V.; Turaev, D. V.; Shil’nikov, L. P., On Newhouse domains of two-dimensional diffeomorphisms which are close to a diffeomorphism with a structurally unstable heteroclinic cycle, Proc. Steklov Inst. Math., 216, 70-118 (1997) · Zbl 0931.37006
[32] Hurley, M., Attractors: Persistence, and density of their basins, Trans. Am. Math. Soc., 269, 1, 247-271 (1982) · Zbl 0494.58023
[33] Karapetyan, A. V., On permanent rotations of a heavy solid body on an absolutely rough horizontal plane, J. Appl. Math. Mech., 45, 604-608 (1982) · Zbl 0493.73015
[34] Kazakov, A. O., Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane, Regul. Chaotic Dyn., 18, 5, 508-520 (2013) · Zbl 1417.37223
[35] Kazakov, A. O., On the chaotic dynamics of a rubber ball with three internal rotors, Nonlinear Dyn. Mobile Robot., 2, 1, 73-97 (2014)
[36] Kazakov, A. O., On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems, Radiophys. Quantum Electron., 61, 8-9, 650-658 (2019)
[37] Kazakov, A., Merger of a H´enon-like attractor with a H´enon-like repeller in a model of vortex dynamics, Chaos, 30, 1, 011105 (2020) · Zbl 1447.37050
[38] Kozlov, V. V., On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., 7, 2, 161-176 (2002) · Zbl 1006.37040
[39] Kozlov, V. V., Several problems on dynamical systems and mechanics, Nonlinearity, 21, 9, T149-T155 (2008) · Zbl 1160.37026
[40] Kozlov, V. V., The Euler-Jacobi-Lee integrability theorem, Regul. Chaotic Dyn., 18, 4, 329-343 (2013) · Zbl 1283.34035
[41] Kuznetsov, S. P., Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint, EPL (Europhys. Lett.), 118, 1, 10007 (2017)
[42] Kuznetsov, S. P.; Jalnin, A. Yu; Sataev, I. R.; Sedova, Yu V., Phenomena of nonlinear dynamics of dissipative systems in nonholonomic mechanics of the rattleback, Nelinein. Din., 8, 4, 735-762 (2012)
[43] Lamb, J. S W.; Stenkin, O. V., Newhouse regions for reversible systems with infinitely many stable, unstable and elliptic periodic orbits, Nonlinearity, 17, 4, 1217-1244 (2004) · Zbl 1061.37030
[44] Markeev, A. P., On the dynamics of a solid on an absolutely rough plane, J. Appl. Math. Mech., 47, 4, 473-478 (1984) · Zbl 0585.73095
[45] Markeev, A. P., Dynamics of a Body in Contact with a Solid Surface (1992), Moscow: Nauka, Moscow · Zbl 0802.70002
[46] Milnor, J., On the concept of attractor, Commun. Math. Phys., 99, 2, 177-195 (1985) · Zbl 0595.58028
[47] Minkov, S. S., Thick attractors and skew products, Cand. Sci. (Phys.-Math.) (2016), Moscow: Moscow State Univ., Moscow
[48] Newhouse, S. E., Diffeomorphisms with infinitely many sinks, Topology, 13, 9-18 (1974) · Zbl 0275.58016
[49] Newhouse, S. E., The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50, 101-151 (1979) · Zbl 0445.58022
[50] Borisov, A. V.; Mamaev, I. S., Nonholonomic Dynamical Systems: Integrability, Chaos, Strange Attractors (2002), Moscow: Inst. Komp’yut. Issled., Moscow · Zbl 1097.37002
[51] Palis, J.; Viana, M., High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., Ser. 2, 140, 1, 207-250 (1994) · Zbl 0817.58004
[52] Roberts, J. A G.; Quispel, G. R W., Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216, 2-3, 63-177 (1992)
[53] Romero, N., Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15, 4, 735-757 (1995) · Zbl 0833.58020
[54] Ruelle, D., Small random perturbations of dynamical systems and the definition of attractors, Commun. Math. Phys., 82, 137-151 (1981) · Zbl 0482.58017
[55] Sevryuk, M. B., Reversible Systems (1986), Berlin: Springer, Berlin · Zbl 0661.58002
[56] Suslov, G. K., Theoretical Mechanics (1946), Moscow: Gostekhizdat, Moscow
[57] Suslov, G. K., On the issue of surface rolling on the surface, Univ. Izv. (Kiev), No., 6, 1-41 (1892)
[58] Topaj, D.; Pikovsky, A., Reversibility vs. synchronization in oscillator lattices, Physica D, 170, 2, 118-130 (2002) · Zbl 1029.70005
[59] Turaev, D., Richness of chaos in the absolute Newhouse domain, Proc. Int. Congr. Math., Hyderabad (India), 2010, Vol. 3: Invited Lectures, 1804-1815 (2011), Hackensack, NJ: World Scientific, Hackensack, NJ · Zbl 1262.37016
[60] Turaev, D., Maps close to identity and universal maps in the Newhouse domain, Commun. Math. Phys., 335, 3, 1235-1277 (2015) · Zbl 1347.37038
[61] Turaev, D. V.; Shil’nikov, L. P., An example of a wild strange attractor, Sb. Math., 189, 2, 291-314 (1998) · Zbl 0927.37017
[62] Turaev, D. V.; Shil’nikov, L. P., Pseudohyperbolicity and the problem on periodic perturbations of Lorenztype attractors, Dokl. Math., 77, 1, 17-21 (2008) · Zbl 1157.37022
[63] Vagner, V., Geometric interpretation of the motion of nonholonomic dynamical systems, Proc. Semin. on Vector and Tensor Analysis with Applications to Geometry, Mechanics, and Physics, 301-327 (1941), Moscow: OGIZ, Moscow · Zbl 0063.07917
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.